Power Generation Technology ›› 2025, Vol. 46 ›› Issue (2): 326-335.DOI: 10.12096/j.2096-4528.pgt.23129
• New Energy • Previous Articles
Yangfan ZHANG1, Yilin LI2, Lin YE2, Xuejiao FU1, Zhengyu WANG1, Yaohan WANG1
Received:
2024-05-10
Revised:
2024-08-01
Published:
2025-04-30
Online:
2025-04-23
Supported by:
CLC Number:
Yangfan ZHANG, Yilin LI, Lin YE, Xuejiao FU, Zhengyu WANG, Yaohan WANG. Short-Term Wind Power Prediction Method Considering Wind Turbine Operation Status Clustering Under Low-Temperature Conditions[J]. Power Generation Technology, 2025, 46(2): 326-335.
类型 | 特征参量 |
---|---|
风机运行控制参数 | 控制柜温度切机阈值 |
环境温度切机阈值 | |
齿轮箱油温切机阈值 | |
机舱温度切机阈值 | |
风机运行特征参数 | 切机时刻 |
停机时长 | |
风机并网恢复时长 |
Tab. 1 Characteristic parameters of wind turbine clustering
类型 | 特征参量 |
---|---|
风机运行控制参数 | 控制柜温度切机阈值 |
环境温度切机阈值 | |
齿轮箱油温切机阈值 | |
机舱温度切机阈值 | |
风机运行特征参数 | 切机时刻 |
停机时长 | |
风机并网恢复时长 |
算法 | 参数 | 数值 |
---|---|---|
SVM | 惩罚系数Cp | 1.0 |
核函数 | RBF | |
LightGBM | 树最大深度 | 6 |
叶子节点数 | 64 | |
评估器个数 | 100 | |
学习率 | 0.05 |
Tab. 2 Model parameter settings
算法 | 参数 | 数值 |
---|---|---|
SVM | 惩罚系数Cp | 1.0 |
核函数 | RBF | |
LightGBM | 树最大深度 | 6 |
叶子节点数 | 64 | |
评估器个数 | 100 | |
学习率 | 0.05 |
类别 | 风机数量/台 | 合计装机容量/MW |
---|---|---|
1 | 35 | 84 |
2 | 66 | 99 |
3 | 53 | 106 |
Tab. 3 Wind turbine clustering results
类别 | 风机数量/台 | 合计装机容量/MW |
---|---|---|
1 | 35 | 84 |
2 | 66 | 99 |
3 | 53 | 106 |
方法 | 训练集(2021年) | 测试集(2022年) | ||
---|---|---|---|---|
ENRMS/% | ENMA/% | ENRMS/% | ENMA/% | |
原始模型(LightGBM) | 16.664 | 11.980 | 21.742 | 16.153 |
SVM-MLP | 11.573 | 8.121 | 18.434 | 13.721 |
SVM-CNN | 10.456 | 7.112 | 17.541 | 12.703 |
SVM-RF | 10.180 | 6.012 | 15.216 | 10.110 |
SVM-XGBoost | 9.544 | 5.887 | 14.874 | 9.102 |
本文方法 | 9.376 | 5.521 | 14.611 | 8.293 |
决策树-LightGBM | 10.321 | 6.229 | 15.036 | 9.397 |
kNN-LightGBM | 10.356 | 6.747 | 15.780 | 9.436 |
LR-LightGBM | 10.452 | 6.337 | 15.366 | 9.420 |
BNN-LightGBM | 9.982 | 5.733 | 14.901 | 9.005 |
Tab. 4 Comparison of results using different prediction methods
方法 | 训练集(2021年) | 测试集(2022年) | ||
---|---|---|---|---|
ENRMS/% | ENMA/% | ENRMS/% | ENMA/% | |
原始模型(LightGBM) | 16.664 | 11.980 | 21.742 | 16.153 |
SVM-MLP | 11.573 | 8.121 | 18.434 | 13.721 |
SVM-CNN | 10.456 | 7.112 | 17.541 | 12.703 |
SVM-RF | 10.180 | 6.012 | 15.216 | 10.110 |
SVM-XGBoost | 9.544 | 5.887 | 14.874 | 9.102 |
本文方法 | 9.376 | 5.521 | 14.611 | 8.293 |
决策树-LightGBM | 10.321 | 6.229 | 15.036 | 9.397 |
kNN-LightGBM | 10.356 | 6.747 | 15.780 | 9.436 |
LR-LightGBM | 10.452 | 6.337 | 15.366 | 9.420 |
BNN-LightGBM | 9.982 | 5.733 | 14.901 | 9.005 |
1 | 陶思钰,江福庆 .集群化发展模式下风电场预测、规划及控制关键技术综述[J].电力工程技术,2024,43(1):86-99. |
TAO S Y, JIANG F Q .Review of the key technologies of wind farm cluster prediction,planning and control[J].Electric Power Engineering Technology,2024,43(1):86-99. | |
2 | 刘洪波,刘永发,任阳,等 .高风电渗透率下考虑系统风电备用容量的储能配置[J].发电技术,2024,45(2):260-272. |
LIU H B, LIU Y F, REN Y,et al .Energy storage configuration considering the system wind power reserve capacity under high wind power permeability[J].Power Generation Technology,2024,45(2):260-272. | |
3 | 李璐,张泽端,毕贵红,等 .“双碳”目标下基于系统动力学的发电行业碳减排政策研究[J].电力系统保护与控制,2024,52(12):69-81. |
LI L, ZHANG Z D, BI G H,et al .Carbon emission reduction policy in the power generation sector based on system dynamics with “dual carbon” targets[J].Power System Protection and Control,2024,52(12):69-81. | |
4 | 中华人民共和国国家统计局 .中国统计年鉴[M].北京:中国统计出版社,2024. |
National Bureau of Statistics of China .China statistical yearbook[M].Beijing:China Statistics Press,2024. | |
5 | 蒋慕凝,何宇,张棠茜,等 .基于特征选择及误差修正的风电功率预测[J].分布式能源,2023,8(2):37-43. |
JIANG M N, HE Y, ZHANG T Q,et al .Wind power prediction based on feature selection and error correction[J].Distributed Energy,2023,8(2):37-43. | |
6 | 张玮,白恺,鲁宗相,等 .特大型新能源基地面临挑战及未来形态演化分析[J].全球能源互联网,2023,6(1):10-25. |
ZHANG W, BAI K, LU Z X,et al .Analysis of the challenges and future morphological evolution of super large-scale renewable energy base[J].Journal of Global Energy Interconnection,2023,6(1):10-25. | |
7 | 周丹,袁至,李骥,等 .考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J].发电技术,2024,45(3):412-422. |
ZHOU D, YUAN Z, LI J,et al .An advanced fuzzy control strategy for hybrid energy storage systems considering smoothing of wind power fluctuations at future moments[J].Power Generation Technology,2024,45(3):412-422. | |
8 | 周灵刚,朱敏捷,李建华 .风电场安全运行中的低温影响效应试验测试[J].电网与清洁能源,2023,39(5):144-150. |
ZHOU L G, ZHU M J, LI J H .Testing of low temperature effects in the safe operation of wind farms[J].Power System and Clean Energy,2023,39(5):144-150. | |
9 | 邓韦斯,卢斯煜,刘显茁,等 .基于相空间重构和BiLSTM的风电功率短期预测[J].广东电力,2023,36(7):22-30. |
DENG W S, LU S Y, LIU X Z,et al .Short-term forecasting of wind power based on phase space reconstruction and BiLSTM[J].Guangdong Electric Power,2023,36(7):22-30. | |
10 | 陈亦平,刘育成,夏成军,等 .极端天气下爱尔兰新能源高渗透场景调度经验及启示[J].电力建设,2024,45(9):26-38. |
CHEN Y P, LIU Y C, XIA C J,et al .Irish experience and insights on dispatching in high renewable penetration scenarios during extreme weather periods[J].Electric Power Construction,2024,45(9):26-38. | |
11 | 孙华东,许涛,郭强,等 .英国“8·9”大停电事故分析及对中国电网的启示[J].中国电机工程学报,2019,39(21):6183-6192. |
SUN H D, XU T, GUO Q,et al .Analysis on blackout in Great Britain power grid on August 9th,2019 and its enlightenment to power grid in China[J].Proceedings of the CSEE,2019,39(21):6183-6192. | |
12 | LI Z M, XU Y, WANG P,et al .Coordinated preparation and recovery of a post-disaster Multi-energy distribution system considering thermal inertia and diverse uncertainties[J].Applied Energy,2023,336:120736. doi:10.1016/j.apenergy.2023.120736 |
13 | 冷喜武 .美国得州2021轮停事故分析及其对中国电网改革的启示[J].发电技术,2021,42(2):151-159. |
LENG X W .The analysis of 2021 Texas’ rotating blackout incident and its enlightenment to the reform of China power grid[J].Power Generation Technology,2021,42(2):151-159. | |
14 | GAO L Y, DASARI T, HONG J R .Wind farm icing loss forecast pertinent to winter extremes[J].Sustainable Energy Technologies and Assessments,2022,50:101872. doi:10.1016/j.seta.2021.101872 |
15 | SWENSON L, GAO L Y, HONG J R,et al .An efficacious model for predicting icing-induced energy loss for wind turbines[J].Applied Energy,2022,305:117809. doi:10.1016/j.apenergy.2021.117809 |
16 | 乔妍,韩丽,李梦洁 .基于爬坡特征和云模型的风电功率预测误差区间评估[J].电力系统自动化,2022,46(11):75-84. |
QIAO Y, HAN L, LI M J .Interval estimation of wind power forecasting error based on ramp features and cloud model[J].Automation of Electric Power Systems,2022,46(11):75-84. | |
17 | 屈尹鹏,徐箭,姜尚光,等 .基于频繁模式挖掘的风电爬坡事件统计特性建模及预测[J].电力系统自动化,2021,45(1):36-43. |
QU Y P, XU J, JIANG S G,et al .Frequent pattern mining based modeling and forecasting for statistical characteristics of wind power ramp events[J].Automation of Electric Power Systems,2021,45(1):36-43. | |
18 | 王康,张青蕾,王泽,等 .高比例风电系统的爬坡备用需求评估[J].电网与清洁能源,2022,38(8):94-101. doi:10.3969/j.issn.1674-3814.2022.08.012 |
WANG K, ZHANG Q L, WANG Z,et al .Evaluation of ramping reserve requirement for high-proportion wind power systems[J].Power System and Clean Energy,2022,38(8):94-101. doi:10.3969/j.issn.1674-3814.2022.08.012 | |
19 | ZHAO Y N, YE L, PINSON P,et al .Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting[J].IEEE Transactions on Power Systems,2018,33(5):5029-5040. doi:10.1109/tpwrs.2018.2794450 |
20 | 黄玲玲,李锁,符杨,等 .基于风电机组状态的超短期海上风电功率预测[J].太阳能学报,2022,43(8):391-398. |
HUANG L L, LI S, FU Y,et al .Ultra-short term offshore wind power prediction based on condition-assessment of wind turbines[J].Acta Energiae Solaris Sinica,2022,43(8):391-398. | |
21 | 林铮,刘可真,沈赋,等 .考虑海上风电多机组时空特性的超短期功率预测模型[J].电力系统自动化,2022,46(23):59-66. |
LIN Z, LIU K Z, SHEN F,et al .Ultra-short-term power prediction model considering spatial-temporal characteristics of offshore wind turbines[J].Automation of Electric Power Systems,2022,46(23):59-66. | |
22 | 祁乐,唐健,江平,等 .考虑机组分类的海上风电短期功率预测-校正模型[J].山东电力技术,2021,48(5):16-22. |
QI L, TANG J, JIANG P,et al .Short-term offshore wind power prediction-correction model considering classification of wind farm units[J].Shandong Electric Power,2021,48(5):16-22. | |
23 | 苏向敬,聂良钊,李超杰,等 .基于MSTAGNN模型的可解释海上风电场多风机出力预测[J].电力系统自动化,2023,47(9):88-98. doi:10.7500/AEPS20220502002 |
SU X J, NIE L Z, LI C J,et al .Interpretable power output prediction of multiple wind turbines for offshore wind farm based on multiple spatio-temporal attention graph neural network model[J].Automation of Electric Power Systems,2023,47(9):88-98. doi:10.7500/AEPS20220502002 | |
24 | 叶林,李奕霖,裴铭,等 .寒潮天气小样本条件下的短期风电功率组合预测[J].中国电机工程学报,2023,43(2):543-555. |
YE L, LI Y L, PEI M,et al .Combined approach for short-term wind power forecasting under cold weather with small sample[J].Proceedings of the CSEE,2023,43(2):543-555. | |
25 | 王爽心,郭婷婷,李蒙 .风电机组变工况变桨系统异常状态在线识别[J].中国电机工程学报,2019,39(17):5144-5152. |
WANG S X, GUO T T, LI M .On-line abnormal state identification of pitch system based on transitional mode for wind turbine[J].Proceedings of the CSEE,2019,39(17):5144-5152. | |
26 | 青倚帆,周群,张仁建 .基于贝叶斯网络的10 kV线路时钟超差计量点负荷类型识别方法[J].电力科学与技术学报,2023,38(1):122-129. |
QING Y F, ZHOU Q, ZHANG R J .Load type identification method of 10 kV transmission line clock-inaccuracy metering point based on Bayesian network[J].Journal of Electric Power Science and Technology,2023,38(1):122-129. | |
27 | BAGIROV A M, ALIGULIYEV R M, SULTANOVA N .Finding compact and well-separated clusters:clustering using silhouette coefficients[J].Pattern Recognition,2023,135:109144. doi:10.1016/j.patcog.2022.109144 |
28 | 汪繁荣,梅涛,卢璐 .基于相似日聚类和VMD-LTWDBO-BiLSTM的短期光伏功率预测[J].智慧电力,2024,52(10):56-63. |
WANG F R, MEI T, LU L .Short-term PV power prediction based on similar day clustering with VMD-LTWDBO-BiLSTM[J].Smart Power,2024,52(10):56-63. | |
29 | 赵耀,陆佳煜,李东东,等 .基于机电信号融合的电励磁双凸极电机绕组匝间短路故障诊断[J].电工技术学报,2023,38(1):204-219. |
ZHAO Y, LU J Y, LI D D,et al .A fault diagnosis strategy for winding inter-turn short-circuit fault in doubly salient electro-magnetic machine based on mechanical and electrical signal fusion[J].Transactions of China Electrotechnical Society,2023,38(1):204-219. | |
30 | 邹港,赵斌,罗强,等 .基于PCA-VMD-MVO-SVM的短期光伏输出功率预测方法[J].电力科学与技术学报,2024,39(5):163-171. |
ZOU G, ZHAO B, LUO Q,et al .Prediction method of short-term PV output power based on PCA-VMD-MVO-SVM[J].Journal of Electric Power Science and Technology,2024,39(5):163-171. | |
31 | 刘度度,任浪,肖坤,等 .基于特征选择和机器学习的台区线损计算方法[J].电测与仪表,2024,61(12):133-143. |
LIU D D, REN L, XIAO K,et al .A line loss calculation method based on feature selection and machine learning algorithm[J].Electrical Measurement & Instrumentation,2024,61(12):133-143. | |
32 | 吴宇辉,张扬帆,高峰,等 .基于工作模态分析的风电机组叶片裂纹损伤在线监测研究[J].中国电力,2023,56(10):106-114. |
WU Y H, ZHANG Y F, GAO F,et al .Research on online monitoring of crack damage of wind turbine blades based on working modal analysis[J].Electric Power,2023,56(10):106-114. | |
33 | 苗璐,樊玮,肖红燕,等 .基于改进FCM聚类的光伏电站出力场景特性研究[J].广东电力,2024,37(3):1-11. |
MIAO L, FAN W, XIAO H Y,et al .Study on typical output scenario characteristics of photovoltaic power station based on improved FCM clustering[J].Guangdong Electric Power,2024,37(3):1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||