Power Generation Technology ›› 2025, Vol. 46 ›› Issue (1): 190-199.DOI: 10.12096/j.2096-4528.pgt.23126
• Power Generation and Environmental Protection • Previous Articles
Xianmin ZENG, Boyun LI, Xiangyang SHEN, Jiashu CHEN, Lixing DING
Received:
2023-12-21
Revised:
2024-03-05
Published:
2025-02-28
Online:
2025-02-27
Contact:
Xiangyang SHEN
Supported by:
CLC Number:
Xianmin ZENG, Boyun LI, Xiangyang SHEN, Jiashu CHEN, Lixing DING. Thermal Stress Analysis of Transversally Corrugated Tube in Solar Receiver Under Semi-Circumference Heating[J]. Power Generation Technology, 2025, 46(1): 190-199.
密度/(kg/m3) | 定压比热容/[J/(kg⋅℃)] | 导热系数/[W/(m⋅℃)] | 弹性模量/GPa | 泊松比 | 热膨胀系数/ ℃-1 |
---|---|---|---|---|---|
7 980 | 502 | 18.4 | 193 | 0.305 | 1.4×10-4 |
Tab. 1 Physical properties of stainless steel 316L
密度/(kg/m3) | 定压比热容/[J/(kg⋅℃)] | 导热系数/[W/(m⋅℃)] | 弹性模量/GPa | 泊松比 | 热膨胀系数/ ℃-1 |
---|---|---|---|---|---|
7 980 | 502 | 18.4 | 193 | 0.305 | 1.4×10-4 |
横纹管 | 槽宽P1/mm | 槽深e/mm |
---|---|---|
1号管(T1-a) | 4.3 | 0.45 |
2号管(T1-b) | 4.3 | 0.70 |
3号管(T1-c) | 4.3 | 0.95 |
4号管(T2-a) | 7.3 | 0.45 |
5号管(T2-b) | 7.3 | 0.70 |
6号管(T2-c) | 7.3 | 0.95 |
Tab. 2 Parameters of groove width and groove depth for transversally corrugated tubes
横纹管 | 槽宽P1/mm | 槽深e/mm |
---|---|---|
1号管(T1-a) | 4.3 | 0.45 |
2号管(T1-b) | 4.3 | 0.70 |
3号管(T1-c) | 4.3 | 0.95 |
4号管(T2-a) | 7.3 | 0.45 |
5号管(T2-b) | 7.3 | 0.70 |
6号管(T2-c) | 7.3 | 0.95 |
1 | 丁路,肖欣悦,奚正稳,等 .塔式太阳能吸热器不同方位高空风速模拟计算及影响分析[J].发电技术,2021,42(6):707-714. doi:10.12096/j.2096-4528.pgt.21026 |
DING L, XIAO X Y, XI Z W,et al .Simulation calculation and influence analysis of high altitude wind speed in different directions of tower solar energy receiver[J].Power Generation Technology,2021,42(6):707-714. doi:10.12096/j.2096-4528.pgt.21026 | |
2 | 王晓文,屠楠,方嘉宾,等 .布置螺旋管的太阳能腔式吸热器光学性能模拟[J].发电技术,2023,44(2):221-228. doi:10.12096/j.2096-4528.pgt.22120 |
WANG X W, TU N, FANG J B,et al .Simulation of optical performance for a solar cavity receiver arranged with spiral tubes[J].Power Generation Technology,2023,44(2):221-228. doi:10.12096/j.2096-4528.pgt.22120 | |
3 | 郑建涛,严俊杰,韩临武,等 .多点聚焦的太阳能柱式吸热器能流分布研究[J].中国电机工程学报,2015,35(11):2796-2803. doi:10.13334/j.0258-8013.pcsee.2015.11.018 |
ZHENG J T, YAN J J, HAN L W,et al .Analysis of the solar thermal cylinder receiver heat flux distribution under multi-aiming point strategy[J].Proceedings of the CSEE,2015,35(11):2796-2803. doi:10.13334/j.0258-8013.pcsee.2015.11.018 | |
4 | 张淳,王富强,谭建宇,等 .汇聚太阳能流体流速对吸热器温度场和应力场影响[J].节能技术,2015,33(2):103-107. doi:JournalArticle/5b3b9cd3c095d70f0081dfbe |
ZHANG C, WANG F Q, TAN J Y,et al .Effects of fluid velocity on temperature and thermal stress field of tube receiver under concentrated solar irradiation[J].Energy Conservation Technology,2015,33(2):103-107. doi:JournalArticle/5b3b9cd3c095d70f0081dfbe | |
5 | 王振,马洪芳,孟扬,等 .太阳能有机朗肯循环发电系统分析[J].节能技术,2014,32(5):397-403. doi:10.3969/j.issn.1002-6339.2014.05.003 |
WANG Z, MA H F, MENG Y,et al .Analysis for solar power generation system of organic Rankine cycle[J].Energy Conservation Technology,2014,32(5):397-403. doi:10.3969/j.issn.1002-6339.2014.05.003 | |
6 | 李嘉宝,王沛,赵亮 .基于分布参数模型的塔式熔盐吸热器换热过程动态特性研究[J].可再生能源,2018,36(7):991-996. doi:10.3969/j.issn.1671-5292.2018.07.007 |
LI J B, WANG P, ZHAO L .Study on dynamic characteristics of heat exchange process of a tower type molten salt receiver based on distributed parameter model[J].Renewable Energy Resources,2018,36(7):991-996. doi:10.3969/j.issn.1671-5292.2018.07.007 | |
7 | CONROY T, COLLINS M N, FISHER J,et al .Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers[J].Renewable Energy,2018,129:150-167. doi:10.1016/j.renene.2018.05.101 |
8 | 蔡德程,芮明奇,关欣,等 .高温太阳能吸热管在非均匀热流下的温度研究及结构优化[J].太阳能学报,2022,43(1):437-442. |
CAI D C, RUI M Q, GUAN X,et al .Temperature study and structural optimization of high temperature solar absorbing tube by non-uniform heat flux[J].Acta Energiae Solaris Sinica,2022,43(1):437-442. | |
9 | RODRÍGUEZ-SÁNCHEZ M R, MARUGÁN-CRUZ C, ACOSTA-IBORRA A,et al .Thermo-mechanical modelling of solar central receivers:effect of incident solar flux resolution[J].Solar Energy,2018,165:43-54. doi:10.1016/j.solener.2018.03.005 |
10 | 沈向阳,丁静,陆建峰 .半周加热横纹管内熔盐强化传热特性[J].化工学报,2019,70(12):4546-4555. doi:10.11949/0438-1157.20190685 |
SHEN X Y, DING J, LU J F .Heat transfer characteristic of molten salt in transverse corrugated tube with semi-circumference heating[J].CIESC Journal,2019,70(12):4546-4555. doi:10.11949/0438-1157.20190685 | |
11 | 张沧洪,屠楠,方嘉宾 .单侧非均匀热流边界下水/蒸汽太阳能吸热管热应力研究[J].发电技术,2021,42(6):699-706. doi:10.12096/j.2096-4528.pgt.21047 |
ZHANG C H, TU N, FANG J B .Study on thermal stress of water/steam solar absorber tubes under unilateral non-uniform heat flux boundary conditions[J].Power Generation Technology,2021,42(6):699-706. doi:10.12096/j.2096-4528.pgt.21047 | |
12 | WANG W Q, LI M J, CHENG Z D,et al .Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power[J].Energy,2021,233:121110. doi:10.1016/j.energy.2021.121110 |
13 | FANG J, ZHANG C, TU N,et al .Numerical investigation on heat transfer and thermoelastic stress in a solar cavity receiver[J].Applied Thermal Engineering,2021,198:117430. doi:10.1016/j.applthermaleng.2021.117430 |
14 | DU B C, HE Y L, ZHENG Z J,et al .Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver[J].Applied Thermal Engineering,2016,99:741-750. doi:10.1016/j.applthermaleng.2016.01.101 |
15 | ZHENG Z J, LI M J, HE Y L .Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J].Applied Energy,2017,185:1152-1161. doi:10.1016/j.apenergy.2015.11.039 |
16 | 沈向阳,丁静,陆建峰 .轴向非均匀热流下熔盐吸热管的传热特性[J].当代化工,2015,44(8):1965-1968. doi:10.3969/j.issn.1671-0460.2015.08.078 |
SHEN X Y, DING J, LU J F .Heat transfer performance of molten salts in receiver tube with axial nonuniform heat flux[J].Contemporary Chemical Industry,2015,44(8):1965-1968. doi:10.3969/j.issn.1671-0460.2015.08.078 | |
17 | 杨敏林,杨晓西,丁静,等 .半周加热半周绝热的熔盐吸热管传热特性研究[J].太阳能学报,2009,30(8):1007-1012. doi:10.3321/j.issn:0254-0096.2009.08.001 |
YANG M L, YANG X X, DING J,et al .Heat transfer research on molten salt receiver with semi-circumference heat[J].Acta Energiae Solaris Sinica,2009,30(8):1007-1012. doi:10.3321/j.issn:0254-0096.2009.08.001 | |
18 | FLORES O, MARUGÁN-CRUZ C, SANTANA D,et al .Thermal stresses analysis of a circular tube in a central receiver[J].Energy Procedia,2014,49:354-362. doi:10.1016/j.egypro.2014.03.038 |
19 | LU J, SHEN X, DING J,et al .Convective heat transfer of high temperature molten salt in transversely grooved tube[J].Applied Thermal Engineering,2013,61(2):157-162. doi:10.1016/j.applthermaleng.2013.07.037 |
20 | 沈向阳,陆建峰,丁静,等 .熔盐在螺旋槽管和横纹管内强化传热特性[J].工程热物理学报,2013,34(6):1149-1152. |
SHEN X Y, LU J F, DING J,et al .Heat transfer enhancement of molten salt in spirally corrugated tube and transversely corrugated tube[J].Journal of Engineering Thermophysics,2013,34(6):1149-1152. |
[1] | Kai LI, Pingheng ZHANG, Zhihao MENG, Yunning CAO, Yao XU, Li LIU, Lianming LI. Numerical Simulation of Fly Ash Deposition Characteristics and Flow Field Optimization for SCR External Flue [J]. Power Generation Technology, 2025, 46(1): 145-153. |
[2] | Kaihui WANG, Bin LIU, Xiaohui ZHE, Wei LIU, Hao FAN, Zongyao KANG, Li XU. Kinetic Characterization and NO x Reduction Mechanism of Mixed Ammonia-Hydrogen Combustion in Cyclone Combustor [J]. Power Generation Technology, 2025, 46(1): 171-179. |
[3] | Zhuo LIU, Donglin CHEN, Shuqi WANG, Yijiang YANG, Youyang YAN, Zhan YANG. Optimization Method of Flow Field for Alleviating Clogging of Mist Eliminator in Desulfurization Tower [J]. Power Generation Technology, 2024, 45(6): 1087-1094. |
[4] | Mingyang ZHAO, Linlin YIN, Wentao WEI, Yun CHEN, Richen LIU, Jun LI. Impact of Falling Blocks of High Pressure Turbine Rotor Blades With Squealer Tip on the Aerodynamic Performance and Vibration Characteristics [J]. Power Generation Technology, 2024, 45(5): 856-867. |
[5] | Lixiang QIU, Chao HUANG, Gaosheng WEI, Liu CUI, Xiaoze DU. Effect of Particle Agglomeration on Thermal Conductivity of Solar Salt Nanofluids [J]. Power Generation Technology, 2024, 45(5): 878-887. |
[6] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[7] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[8] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[9] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[10] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[11] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[12] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[13] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[14] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[15] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||