Power Generation Technology ›› 2024, Vol. 45 ›› Issue (5): 878-887.DOI: 10.12096/j.2096-4528.pgt.23046
• New Energy • Previous Articles
Lixiang QIU, Chao HUANG, Gaosheng WEI, Liu CUI, Xiaoze DU
Received:
2023-11-01
Revised:
2024-02-21
Published:
2024-10-31
Online:
2024-10-29
Supported by:
CLC Number:
Lixiang QIU, Chao HUANG, Gaosheng WEI, Liu CUI, Xiaoze DU. Effect of Particle Agglomeration on Thermal Conductivity of Solar Salt Nanofluids[J]. Power Generation Technology, 2024, 45(5): 878-887.
原子 | Aii / (×4 184 J/mol) | ρii /nm | Cii /(×10-60 m×4 184 J/mol) | qi /eV |
---|---|---|---|---|
Na | 9 778.06 | 0.031 7 | 24.18 | 1 |
K | 35 833.47 | 0.033 7 | 349.9 | 1 |
N | 33 652.75 | 0.026 46 | 259.1 | 0.95 |
NO3-中O | 62 142.9 | 0.023 92 | 259.4 | -0.65 |
Si | 72 460.64 | 0.035 1 | 14 415.29 | 1.910 241 8 |
SiO2中O | 15 170.70 | 0.038 6 | 617.24 | -0.955 209 |
Tab. 1 Related potential parameters of Buckingham potential function
原子 | Aii / (×4 184 J/mol) | ρii /nm | Cii /(×10-60 m×4 184 J/mol) | qi /eV |
---|---|---|---|---|
Na | 9 778.06 | 0.031 7 | 24.18 | 1 |
K | 35 833.47 | 0.033 7 | 349.9 | 1 |
N | 33 652.75 | 0.026 46 | 259.1 | 0.95 |
NO3-中O | 62 142.9 | 0.023 92 | 259.4 | -0.65 |
Si | 72 460.64 | 0.035 1 | 14 415.29 | 1.910 241 8 |
SiO2中O | 15 170.70 | 0.038 6 | 617.24 | -0.955 209 |
Kr /(eV⋅10-20 m) | r0 /nm | Kθ /eV | θ /(°) | KUB /eV | rUB/nm |
---|---|---|---|---|---|
17.534 4 | 0.126 | 2.712 2 | 120 | 4.960 8 | 0.219 55 |
Tab. 2 Potential energy parameters of atomic interactions in NO3-
Kr /(eV⋅10-20 m) | r0 /nm | Kθ /eV | θ /(°) | KUB /eV | rUB/nm |
---|---|---|---|---|---|
17.534 4 | 0.126 | 2.712 2 | 120 | 4.960 8 | 0.219 55 |
1 | 佟锴,杨立军,宋记锋,等 .聚光太阳能集热场先进技术综述[J].发电技术,2019,40(5):413-425. |
TONG K, YANG L J, SONG J F,et al .Review on advanced technology of concentrated solar power concentrators[J].Power Generation Technology,2019,40(5):413-425. | |
2 | UEDA A, HORI T, YUKITA K,et al .Energy presumption used with flux of solar radiation and solar spectrum density in solar generation of electricity (faculty of engineering: department of electrical engineering)[J].Bulletin of Aichi Institute of Technology,2004,39:1-6. |
3 | 刘兰华,狄林文,董兴万,等 .抛物槽式聚光太阳能集热回路动态特性研究[J].发电技术,2021,42(6):673-681. doi:10.12096/j.2096-4528.pgt.21066 |
LIU L H, DI L W, DONG X W,et al .Study on dynamic characteristics of parabolic trough solar collector circuit[J].Power Generation Technology,2021,42(6):673-681. doi:10.12096/j.2096-4528.pgt.21066 | |
4 | 魏高升,邢丽婧,杜小泽,等 .太阳能热发电系统相变储热材料选择及研发现状[J].中国电机工程学报,2014,34(3):325-335. |
WEI G S, XING L J, DU X Z,et al .Research status and selection of phase change thermal energy storage materials for CSP systems[J].Proceedings of the CSEE,2014,34(3):325-335. | |
5 | 徐运飞,吴水木,李英杰 .面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J].发电技术,2022,43(5):740-747. doi:10.12096/j.2096-4528.pgt.22089 |
XU Y F, WU S M, LI Y J .Research progress of CaO-CO2 thermochemical heat storage technology for concentrated solar power plant[J].Power Generation Technology,2022,43(5):740-747. doi:10.12096/j.2096-4528.pgt.22089 | |
6 | 张涛,刘伉,陶然,等 .计及热惯性及光热电站的综合能源系统优化[J].电力建设,2023,44(1):109-117. doi:10.12204/j.issn.1000-7229.2023.01.013 |
ZHANG T, LIU K, TAO R,et al .Integrated energy system optimization considering thermal inertia and CSP station[J].Electric Power Construction,2023,44(1):109-117. doi:10.12204/j.issn.1000-7229.2023.01.013 | |
7 | 王湘艳,陈宁,王维洲,等 .计及置信容量的光热电站储热容量优化配置[J].电力工程技术,2022,41(5):103-109,115. doi:10.12158/j.2096-3203.2022.05.012 |
WANG X Y, CHEN N, WANG W Z,et al .Optimal design for thermal energy storage capacity of CSP considering credible capacity[J].Electric Power Engineering Technology,2022,41(5):103-109,115. doi:10.12158/j.2096-3203.2022.05.012 | |
8 | 田禾青,周俊杰,郭茶秀 .熔盐储热材料比热容强化的研究进展[J].化工进展,2020,39(2):584-595. doi:10.16085/j.issn.1000-6613.2019-0798 |
TIAN H Q, ZHOU J J, GUO C X .Progress of specific heat enhancement of molten salt thermal energy storage materials[J].Chemical Industry and Engineering Progress,2020,39(2):584-595. doi:10.16085/j.issn.1000-6613.2019-0798 | |
9 | SONG W, LU Y, WU Y,et al .Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J].Solar Energy Materials and Solar Cells,2018,179:66-71. doi:10.1016/j.solmat.2018.01.014 |
10 | TIAN H, DU L, WEI X,et al .Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage[J].Applied Energy,2017,204:525-530. doi:10.1016/j.apenergy.2017.07.027 |
11 | 张月,王敏,李锦丽,等 .纳米粒子掺杂太阳盐复合材料热物性研究[J].无机盐工业,2022,54(5):54-60. |
ZHANG Y, WANG M, LI J L,et al .Study on thermophysical properties of solar salt composites doped with nanoparticles[J].Inorganic Chemicals Industry,2022,54(5):54-60. | |
12 | CUI X, CHENG X, XU H,et al .Enhancement of thermophysical coefficients in nanofluids:a simulation study[J].International Journal of Modern Physics B,2020,34(25):2050222. doi:10.1142/s0217979220502227 |
13 | ANGAYARKANNI S A, PHILIP J .Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids[J].Journal of Nanofluids,2014,3(1):17-25. doi:10.1166/jon.2014.1083 |
14 | WU C, CHO T J, XU J,et al .Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids[J].Physical Review E,2010,81:011406. doi:10.1103/physreve.81.011406 |
15 | KEBLINSKI P, PHILLPOT S R, CHOI S U S,et al .Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J].International Journal of Heat and Mass Transfer,2002,45(4): 855-863. doi:10.1016/s0017-9310(01)00175-2 |
16 | EVANS W, PRASHER R, FISH J,et al .Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J].International Journal of Heat and Mass Transfer,2008,51(5/6):1431-1438. doi:10.1016/j.ijheatmasstransfer.2007.10.017 |
17 | TAHMOORESSI H, KASAEIAN A, TAROKH A,et al .Numerical simulation of aggregation effect on nanofluids thermal conductivity using the lattice Boltzmann method[J].International Communications in Heat and Mass Transfer,2020,110:104408. doi:10.1016/j.icheatmasstransfer.2019.104408 |
18 | NAGVENKAR A P, PERELSHTEIN I, GEDANKEN A .Doping effect on the thermal conductivity of metal oxide nanofluids:insight and mechanistic investigation[J].The Journal of Physical Chemistry C,2017,. doi:10.1021/acs.jpcc.7b10020 |
121(47):26551-26557. doi:10.1021/acs.jpcc.7b10020 | |
19 | 胡志新,王宏亮,张陵 .二氧化硅薄膜材料热传导尺寸效应的实验研究[J].传感器技术,2003,22(5):13-14. doi:10.3969/j.issn.1000-9787.2003.05.005 |
HU Z X, WANG H L, ZHANG L .Experimental study of the thermal conduction size effect for silicon dioxide film[J].Transducer and Microsystem Technologies,2003,22(5):13-14. doi:10.3969/j.issn.1000-9787.2003.05.005 | |
20 | RINGL C, URBASSEK H M .A simple algorithm for constructing fractal aggregates with pre-determined fractal dimension[J].Computer Physics Communications,2013,184(7):1683-1685. doi:10.1016/j.cpc.2013.02.012 |
21 | QIAO G, LASFARGUES M, ALEXIADIS A,et al .Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J].Applied Thermal Engineering,2017,111:1517-1522. doi:10.1016/j.applthermaleng.2016.07.159 |
22 | QIAO G, ALEXIADIS A, DING Y .Simulation study of anomalous thermal properties of molten nitrate salt[J].Powder Technology,2017,314:660-664. doi:10.1016/j.powtec.2016.11.019 |
23 | JANZ G J, JAMES D W .Raman spectra and ionic interactions in molten nitrates[J].The Journal of Chemical Physics,1961,35(2):739-745. doi:10.1063/1.1731994 |
24 | HISATSUNE I C, DEVLIN J P, CALIFANO S .Urey-Bradley potential constants in nitrogen dioxide,nitrite ion and dinitrogen tetroxide[J].Spectrochimica Acta,1960,16(4):450-458. doi:10.1016/0371-1951(60)80039-2 |
25 | SHAO B, SUN Z W .Non-equilibrium molecular dynamics simulation of the thermal conductivity of crystals film[J].Aircraft Engineering and Aerospace Technology,2006,78:138-141. doi:10.1108/17488840610653450 |
26 | LEE S L, SAIDUR R, SABRI M F M,et al .Molecular dynamic simulation:Studying the effects of Brownian motion and induced micro-convection in nanofluids[J].Numerical Heat Transfer,2016,69(6):643-658. doi:10.1080/10407782.2015.1090765 |
27 | LEE S L, SAIDUR R, SABRI M F M,et al .Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states[J].Numerical Heat Transfer,2015,68(4):432-453. doi:10.1080/10407782.2014.986366 |
28 | WANG M, PAN N .Predictions of effective physical properties of complex multiphase materials[J].Materials Science and Engineering,2008,63(1):1-30. doi:10.1016/j.mser.2008.07.001 |
29 | WANG M, HE J, YU J,et al .Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials[J].International Journal of Thermal Sciences,2007,46(9):848-855. doi:10.1016/j.ijthermalsci.2006.11.006 |
30 | FANG W Z, ZHANG H, CHEN L,et al .Numerical predictions of thermal conductivities for the silica aerogel and its composites[J].Applied Thermal Engineering,2017,115:1277-1286. doi:10.1016/j.applthermaleng.2016.10.184 |
31 | TAHMOORESSI H, KASAEIAN A, YAVARINASAB A,et al .Numerical simulation of nanoparticles size/aspect ratio effect on thermal conductivity of nanofluids using lattice Boltzmann method[J].International Communications in Heat and Mass Transfer,2021,120:105033. doi:10.1016/j.icheatmasstransfer.2020.105033 |
32 | WANG J, WANG M, LI Z .A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J].International Journal of Thermal Sciences,2007,46(3):228-234. doi:10.1016/j.ijthermalsci.2006.04.012 |
33 | HE S, HABTE B T, JIANG F .LBM prediction of effective thermal conductivity of lithium-ion battery graphite anode[J].International Communications in Heat and Mass Transfer,2017,82:1-8. doi:10.1016/j.icheatmasstransfer.2017.02.015 |
34 | ZOU Q, HE X .On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J].Physics of Fluids,1997,9(6):1591-1598. doi:10.1063/1.869307 |
35 | SERRANO-LÓPEZ R, FRADERA J, CUESTA-LÓPEZ S .Molten salts database for energy applications[J].Chemical Engineering and Processing:Process Intensification,2013,73:87-102. doi:10.1016/j.cep.2013.07.008 |
36 | ZHANG P, CHENG J, JIN Y,et al .Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J].Solar Energy Materials and Solar Cells,2018,176:36-41. doi:10.1016/j.solmat.2017.11.011 |
37 | ZHOU F, CHENG G .Lattice Boltzmann model for predicting effective thermal conductivity of composite with randomly distributed particles:considering effect of interactions between particles and matrix[J].Computational Materials Science,2014,92:157-165. doi:10.1016/j.commatsci.2014.05.039 |
38 | ARAB M R, PATEYRON B, GANAOUI M EL,et al .Lattice boltzmann simulations for thermal conductivity estimation in heterogeneous materials[J].Defect and Diffusion Forum,2009,283/284/285/286:364-369. doi:10.4028/www.scientific.net/ddf.283-286.364 |
39 | REYES-MATA M, BLAWZDZIEWICZ J, WAJNRYB E,et al .Aggregation and effective thermal conductivity of nanofluids:dependence on cluster size and morphology[C]//ASME 2014 International Mechanical Engineering Congress and Exposition.Montreal,Quebec,Canada:ASME,2015:V007T09A013. doi:10.1115/imece2014-38256 |
40 | DU J, SU Q, LI L,et al .Evaluation of the influence of aggregation morphology on thermal conductivity of nanofluid by a new MPCD-MD hybrid method[J].International Communications in Heat and Mass Transfer,2021,127:105501. doi:10.1016/j.icheatmasstransfer.2021.105501 |
41 | WANG R, QIAN S, ZHANG Z .Investigation of the aggregation morphology of nanoparticle on the thermal conductivity of nanofluid by molecular dynamics simulations[J].International Journal of Heat and Mass Transfer,2018,127:1138-1146. doi:10.1016/j.ijheatmasstransfer.2018.08.117 |
42 | CUI L, YU Q, WEI G,et al .Mechanisms for thermal conduction in molten salt-based nanofluid[J].International Journal of Heat and Mass Transfer,2022,188:122648. doi:10.1016/j.ijheatmasstransfer.2022.122648 |
43 | NI H, WU J, SUN Z,et al .Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J].Renewable Energy,2019,136:955-967. doi:10.1016/j.renene.2019.01.044 |
44 | MAXWELL C I, SAOUDI M, PENCER J .Development of a polarizable interatomic potential for molten lithium,sodium,and potassium nitrate[J].The Journal of Physical Chemistry B,2020,124(23):4751-4761. doi:10.1021/acs.jpcb.0c02245 |
45 | CHLIATZOU C D, ASSAEL M J, ANTONIADIS K D,et al .Reference correlations for the thermal conductivity of 13 inorganic molten salts[J].Journal of Physical and Chemical Reference Data,2018,47:10.1063/1.5052343. doi:10.1063/1.5052343 |
[1] | Xiaofeng CHEN, Chuan ZUO, Ning ZHAO, Kai HUANG, Huijie WANG. Analysis on Peak Regulation Characteristics of Thermal Power Units With Integrated Heat Storage Device [J]. Power Generation Technology, 2024, 45(3): 392-400. |
[2] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[3] | ABD-HAMID Mohamed, Longyu XIA, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Performance Analysis of Photovoltaic/Thermal Hybrid System Integrated With Phase Change Heat Storage Materials [J]. Power Generation Technology, 2023, 44(1): 53-62. |
[4] | Zedong ZHANG, Wei WANG, Jilei YE, Hong SHEN. Study on Steady State Power Model of Concentrated Solar Power With Heat Storage System [J]. Power Generation Technology, 2022, 43(5): 731-739. |
[5] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[6] | Zehang LI, Hao ZHOU, Haomiao LI, Kangli WANG, Kai JIANG. Liquid Metal Battery Energy Storage Technology for Power System [J]. Power Generation Technology, 2022, 43(5): 760-774. |
[7] | Hui ZHANG, Xiufang GU, Yanning CHEN, Zhenpeng LUO, Chen WANG. Benefit Cost Analysis of Thermal Storage Tank in Thermal Power Plant Considering Wind Power Consumption [J]. Power Generation Technology, 2022, 43(4): 664-672. |
[8] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[9] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[10] | Chunxu DU, Yancheng MA, Yanquan WANG, Jihao XIE, Jinkai LIU, Yuanwei LU. Development of Molten Salt Electric Heating Control System Based on Monitor and Control Generated System and Programmable Logic Controller [J]. Power Generation Technology, 2021, 42(6): 727-733. |
[11] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[12] | Hao SUN, Bo GAO, Jianxing LIU. Study on Heliostat Field Layout of Solar Power Tower Plant [J]. Power Generation Technology, 2021, 42(6): 690-698. |
[13] | Lanhua LIU, Linwen DI, Xingwan DONG, Ruilin WANG. Study on Dynamic Characteristics of Parabolic Trough Solar Collector Circuit [J]. Power Generation Technology, 2021, 42(6): 673-681. |
[14] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Experimental Analysis of the Influence of Flow Rate on Heat Transfer Characteristics of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2021, 42(6): 665-672. |
[15] | Lanhua LIU, Ruilin WANG, Hui HONG. Design of Calcium-based Carbon Capture System for Gas-Steam Combined Cycle Assisted by Solar Thermal Tower [J]. Power Generation Technology, 2021, 42(4): 517-524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||