Power Generation Technology ›› 2022, Vol. 43 ›› Issue (5): 760-774.DOI: 10.12096/j.2096-4528.pgt.22154
• New Energy Storage Ontology Technology • Previous Articles Next Articles
Zehang LI1,2, Hao ZHOU2, Haomiao LI1, Kangli WANG1, Kai JIANG1
Received:
2022-09-08
Published:
2022-10-31
Online:
2022-11-04
Supported by:
CLC Number:
Zehang LI, Hao ZHOU, Haomiao LI, Kangli WANG, Kai JIANG. Liquid Metal Battery Energy Storage Technology for Power System[J]. Power Generation Technology, 2022, 43(5): 760-774.
组成(组分摩尔分数比) | 熔点/℃ | 离子电导率/(S/cm) | 成本/(美元/mol) |
---|---|---|---|
LiF-LiCl (30∶70)[ | 501 | — | 5.29 |
LiF-LiCl-LiBr (22∶31∶47)[ | 430 | 3.21 | 7.83 |
LiF-LiCl-LiI (20∶30∶50)[ | 341 | 2.77 | 9.31 |
LiCl-LiI (36∶64)[ | 368 | 3.88 | 10.07 |
LiCl-KCl (58.8∶41.2)[ | 353 | 1.69 | 2.90 |
LiCl-LiBr-KBr (33∶29∶38)[ | 324 | 1.56 | 5.92 |
LiI-KI (63.3∶36.7)[ | 260 | 1.56 | 21.07 |
NaF-NaCl-NaI (15∶32∶53)[ | 530 | 1.7~2.0 | 6.41 |
LiCl-NaCl-KCl (59∶5∶36)[ | 350 | 1.307 | 2.89 |
LiCl-CaCl2-NaCl (38∶27∶35)[ | 450 | 2.18 | 1.83 |
NaCl-CaCl2 (47.9∶52.1)[ | 504 | — | 0.11 |
LiCl-CaCl2 (65∶35)[ | 485 | — | 3.09 |
NaCl-KCl-MgCl2 (30∶20∶50)[ | 396 | — | 0.11 |
Tab.1 Electrolyte of LMB and its properties
组成(组分摩尔分数比) | 熔点/℃ | 离子电导率/(S/cm) | 成本/(美元/mol) |
---|---|---|---|
LiF-LiCl (30∶70)[ | 501 | — | 5.29 |
LiF-LiCl-LiBr (22∶31∶47)[ | 430 | 3.21 | 7.83 |
LiF-LiCl-LiI (20∶30∶50)[ | 341 | 2.77 | 9.31 |
LiCl-LiI (36∶64)[ | 368 | 3.88 | 10.07 |
LiCl-KCl (58.8∶41.2)[ | 353 | 1.69 | 2.90 |
LiCl-LiBr-KBr (33∶29∶38)[ | 324 | 1.56 | 5.92 |
LiI-KI (63.3∶36.7)[ | 260 | 1.56 | 21.07 |
NaF-NaCl-NaI (15∶32∶53)[ | 530 | 1.7~2.0 | 6.41 |
LiCl-NaCl-KCl (59∶5∶36)[ | 350 | 1.307 | 2.89 |
LiCl-CaCl2-NaCl (38∶27∶35)[ | 450 | 2.18 | 1.83 |
NaCl-CaCl2 (47.9∶52.1)[ | 504 | — | 0.11 |
LiCl-CaCl2 (65∶35)[ | 485 | — | 3.09 |
NaCl-KCl-MgCl2 (30∶20∶50)[ | 396 | — | 0.11 |
体系 | 放电容量/(A⋅h) | 放电能量/(W⋅h) | 材料质量/g | 能量密度/(W⋅h/kg) | 成本/[美元/(kW⋅h)] | |
---|---|---|---|---|---|---|
负极 | 正极 | |||||
Mg||Sb[ | 2.5 | 0.475 | 2.27 | 17.06 | 24.58 | 276.17 |
Li||Bi[ | 48.8 | 26.84 | 13.9 | 166.8 | 148.5 | 78.2 |
Ca-Mg||Bi[ | 0.539 | 0.280 | 0.4(Ca), 0.96(Mg) | 6 | 38 | 144.7 |
Li||Sb-Pb[ | 61.78 | 39.1 | 16 | 101.7(Sb), 260(Pb) | 103.63 | 66.64 |
Li||Sb-Sn[ | 19.7 | 15.34 | 5.18 | 30.3(Sb), 44.3(Sn) | 192.3 | 115.5 |
Li||Sb-Bi[ | 2.75 | 1.95 | 1.04 | 1.82(Sb), 4.68(Bi) | 258.62 | 63.43 |
Li||Te-Sn[ | 2 | 2.968 | 0.55 | 4.72(Te), 0.72(Sn) | 495.9 | 143.3 |
Li||Sb[ | 46.4 | 37.4 | 13 | 75.7 | 421.6 | 42.4 |
Tab.2 Main performance parameters of some LMB systems
体系 | 放电容量/(A⋅h) | 放电能量/(W⋅h) | 材料质量/g | 能量密度/(W⋅h/kg) | 成本/[美元/(kW⋅h)] | |
---|---|---|---|---|---|---|
负极 | 正极 | |||||
Mg||Sb[ | 2.5 | 0.475 | 2.27 | 17.06 | 24.58 | 276.17 |
Li||Bi[ | 48.8 | 26.84 | 13.9 | 166.8 | 148.5 | 78.2 |
Ca-Mg||Bi[ | 0.539 | 0.280 | 0.4(Ca), 0.96(Mg) | 6 | 38 | 144.7 |
Li||Sb-Pb[ | 61.78 | 39.1 | 16 | 101.7(Sb), 260(Pb) | 103.63 | 66.64 |
Li||Sb-Sn[ | 19.7 | 15.34 | 5.18 | 30.3(Sb), 44.3(Sn) | 192.3 | 115.5 |
Li||Sb-Bi[ | 2.75 | 1.95 | 1.04 | 1.82(Sb), 4.68(Bi) | 258.62 | 63.43 |
Li||Te-Sn[ | 2 | 2.968 | 0.55 | 4.72(Te), 0.72(Sn) | 495.9 | 143.3 |
Li||Sb[ | 46.4 | 37.4 | 13 | 75.7 | 421.6 | 42.4 |
1 | 国家能源局 .我国可再生能源发电总装机突破11亿千瓦[EB/OL].(2022-06-24)[2022-08-23].. doi:10.18356/9789210012850c042 |
National Energy Administration .China’s total installed capacity of renewable energy power generation exceeded 1.1 billion kilowatt[EB/OL].(2022-06-24)[2022-08- 23].. doi:10.18356/9789210012850c042 | |
2 | YANG Z, ZHANG J, KINTNER-MEYER M,et al .Electrochemical energy storage for green grid[J].Chemical Reviews,2011,111(5):3577-3613. doi:10.1021/cr100290v |
3 | 王明松 .风-光-蓄-火联合发电系统的两阶段优化调度策略[J].电网与清洁能源,2020,36(5):75-82. doi:10.3969/j.issn.1674-3814.2020.05.011 |
WANG M S .Two-stage optimal dispatching strategy of the wind-solar-pumped storage-thermal combined system[J].Power System and Clean Energy,2020,36(5):75-82. doi:10.3969/j.issn.1674-3814.2020.05.011 | |
4 | 叶季蕾,李斌,张宇,等 .基于全球能源互联网典型特征的储能需求及配置分析[J].发电技术,2021,42(1):20-30. doi:10.12096/j.2096-4528.pgt.20082 |
YE J L, LI B, ZHANG Y,et al .Energy storage requirements and configuration analysis based on typical characteristics of global energy internet[J].Power Generation Technology,2021,42(1):20-30. doi:10.12096/j.2096-4528.pgt.20082 | |
5 | 寇凌峰,张颖,季宇,等 .分布式储能的典型应用场景及运营模式分析[J].电力系统保护与控制,2020,48(4):177-187. doi:10.13334/j.0258-8013.pcsee.182594 |
KOU L F, ZHANG Y, JI Y,et al .Typical application scenario and operation mode analysis of distributed energy storage[J].Power System Protection and Control,2020,48(4):177-187. doi:10.13334/j.0258-8013.pcsee.182594 | |
6 | 李建林,李雅欣,周喜超 .电网侧储能技术研究综述[J].电力建设,2020,41(6):77-84. doi:10.16628/j.cnki.2095-8188.2020.05.001 |
LI J L, LI Y X, ZHOU X C .Summary of research on grid-side energy storage technology[J].Electric Power Construction,2020,41(6):77-84. doi:10.16628/j.cnki.2095-8188.2020.05.001 | |
7 | 席星璇,熊敏鹏,袁家海 .风电场发电侧配置储能系统的经济性研究[J].智慧电力,2020,48(11):16-21. doi:10.3969/j.issn.1673-7598.2020.11.004 |
XI X X, XIONG M P, YUAN J H .Economy analysis of energy storage system in wind farm generation side[J].Smart Power,2020,48(11):16-21. doi:10.3969/j.issn.1673-7598.2020.11.004 | |
8 | 张文亮,丘明,来小康 .储能技术在电力系统中的应用[J].电网技术,2008(7):1-9. |
ZHANG W L, QIU M, LAI X K .Application of energy storage technologies in power grids[J].Power System Technology,2008(7):1-9. | |
9 | 李建林,方知进,李雅欣,等 .用于应急的移动储能系统集群协同控制综述[J].电力建设,2022,43(3):75-82. doi:10.12204/j.issn.1000-7229.2022.03.009 |
LI J L, FANG Z J, LI Y X,et al .Overview of cluster cooperative control of mobile energy storage system for emergency response[J].Electric Power Construction,2022,43(3):75-82. doi:10.12204/j.issn.1000-7229.2022.03.009 | |
10 | 文劲宇,周博,魏利屾 .中国未来电力系统储电网初探[J].电力系统保护与控制,2022,50(7):1-10. doi:10.1109/mc.2017.52 |
WEN J Y, ZHOU B, WEI L S .Preliminary study on an energy storage grid for future power system in China[J].Power System Protection and Control,2022,. doi:10.1109/mc.2017.52 | |
50(7):1-10. doi:10.1109/mc.2017.52 | |
11 | 许守平,李相俊,惠东 .大规模储能系统发展现状及示范应用综述[J].电网与清洁能源,2013,29(8):94-100. doi:10.3969/j.issn.1674-3814.2013.08.018 |
XU S P, LI X J, HUI D .A survey of the development and demonstration application of large-scale energy storage[J].Power System and Clean Energy,2013,. doi:10.3969/j.issn.1674-3814.2013.08.018 | |
29(8):94-100. doi:10.3969/j.issn.1674-3814.2013.08.018 | |
12 | 申洪,周勤勇,刘耀,等 .碳中和背景下全球能源互联网构建的关键技术及展望[J].发电技术,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 |
SHEN H, ZHOU Q Y, LIU Y,et al .Key technologies and prospects for the construction of global energy internet under the background of carbon neutral[J].Power Generation Technology,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 | |
13 | HOOPES W .Electrolytically-refined aluminum and articles made therefrom:US1534315A[P].1925-04-21. |
14 | YEAGER E .Fuel cells:basic considerations,in power sources division[C]//Proceedings of 12th Annual Battery Research and Development.Fort Monmouth,NJ:Army Signal Research & Development Laboratory,1958:2. |
15 | AGRUSS B, KARAS H B .The thermally regenerative liquid metal concentration cell[J].Advances in Chemistry,1967,64:62-81. doi:10.1021/ba-1967-0064.ch007 |
16 | KIM H, BOYSEN D A, NEWHOUSE J M,et al .Liquid metal batteries:past,present,and future[J].Chemical Reviews,2013,113(3):2075-2099. doi:10.1021/cr300205k |
17 | NING X, PHADKE S, CHUNG B,et al .Self-healing Li-Bi liquid metal battery for grid-scale energy storage[J].Journal of Power Sources,2015,275:370-376. doi:10.1016/j.jpowsour.2014.10.173 |
18 | LI H, WANG K, CHENG S,et al .High performance liquid metal battery with environmental friendly antimony-tin positive electrode[J].ACS Applied Materials & Interfaces,2016:12830. doi:10.1021/acsami.6b02576 |
19 | WANG K, JIANG K, CHUNG B,et al .Lithium-antimony-lead liquid metal battery for grid-level energy storage[J].Nature,2014,514:348-350. doi:10.1038/nature13700 |
20 | KIM J, SHIN D, JUNG Y,et al .LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery[J].Journal of Power Sources,2018,377:87-92. doi:10.1016/j.jpowsour.2017.11.081 |
21 | MASSET P, HENRY A, POINSO J Y,et al .Ionic conductivity measurements of molten iodide-based electrolytes[J].Journal of Power Sources,2006,. doi:10.1016/j.jpowsour.2006.01.014 |
160(1):752-757. doi:10.1016/j.jpowsour.2006.01.014 | |
22 | XIE H L, CHEN Z Y, CHU P,et al .An elaborate low-temperature electrolyte design towards high-performance liquid metal battery[J].Journal of Power Sources,2022,536:231527. doi:10.1016/j.jpowsour.2022.231527 |
23 | YU H, LU H, HU X,et al .LiI-KI and LAGP electrolytes with a bismuth-tin positive electrode for the development of a liquid lithium battery[J].Materials Chemistry and Physics,2020,247:122865. doi:10.1016/j.matchemphys.2020.122865 |
24 | CAIRNS E, CROUTHAMEL C, FISCHER A,et al .Argonne National Lab.,Ill[R].United States:Argonne National Laboratory,1967. doi:10.2172/4543889 |
25 | ZHOU H, LI H M, GONG Q,et al .A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage[J].Energy Storage Materials,2022,50:572-579. doi:10.1016/j.ensm.2022.05.032 |
26 | KIM H, BOYSEN D A, OUCHI T,et al .Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)[J].Journal of Power Sources,2013,241:239-248. doi:10.1016/j.jpowsour.2013.04.052 |
27 | JANZ G J,Physical properties data compilations relevant to energy storage[M].Washington:U.S.Department of Commerce,1978. doi:10.6028/nbs.nsrds.61p1 |
28 | OUCHI T, KIM H, PATOCCO B L,et al .Calcium-based multi-element chemistry for grid-scale electrochemical energy storage[J].Nature Communications,2016,7:10999. doi:10.1038/ncomms10999 |
29 | BRADWELL D J, KIM H, SIRK A H C,et al .Magnesium-antimony liquid metal battery for stationary energy storage[J].Journal of the American Chemical Society,2012,134(4):1895-1897. doi:10.1021/ja209759s |
30 | LI H M, YIN H Y, WANG K L,et al .Liquid metal electrodes for energy storage batteries[J].Advanced Energy Materials,2016,6:1600483. doi:10.1002/aenm.201600483 |
31 | DAI T, ZHAO Y, NING X H,et al .Capacity extended bismuth-antimony cathode for high-performance liquid metal battery[J].Journal of Power Sources,2018,381:38-45. doi:10.1016/j.jpowsour.2018.01.048 |
32 | ZHAO W, LI P, LIU Z,et al .High performance antimony-bismuth-tin positive electrode for liquid metal battery[J].Chemistry of Materials,2018,30(24):8739-8746. doi:10.1021/acs.chemmater.8b01869 |
33 | CUI K, ZHAO W, LI S,et al .Low-temperature and high-energy-density Li-based liquid metal batteries based on LiCl-KCl molten salt electrolyte[J].ACS Sustainable Chemistry & Engineering,2022,10(5):1871-1879. doi:10.1021/acssuschemeng.1c07560 |
34 | YAN S, ZHOU X B, Li H M,et al .Utilizing in situ alloying reaction to achieve the self-healing,high energy density and cost-effective Li||Sb liquid metal battery[J].Journal of Power Sources,2021,514:230578. doi:10.1016/j.jpowsour.2021.230578 |
35 | ZHOU X B, ZHOU H, YAN S,et al .Increasing the actual energy density of Sb-based liquid metal battery[J].Journal of Power Sources,2022,534:231428. doi:10.1016/j.jpowsour.2022.231428 |
36 | LI H, WANG K, HAO Z,et al .Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications[J].Energy Storage Materials,2018,14:267-271. doi:10.1016/j.ensm.2018.04.017 |
37 | XIE H, ZHAO H, WANG J,et al .High-performance bismuth-gallium positive electrode for liquid metal battery[J].Journal of Power Sources,2020,472:228634. doi:10.1016/j.jpowsour.2020.228634 |
38 | SONGSTER J, PELTON A D .The Li-Te (lithium-tellurium) system[J].1992,13(3):300-303. doi:10.1007/bf02667559 |
39 | NEWHOUSE J M, POIZEAU S, KIM H,et al .Thermodynamic properties of calcium-magnesium alloys determined by EMF measurements[J].Electrochimica Acta,2013,91:293-301. doi:10.1016/j.electacta.2012.11.063 |
40 | XU J, KJOS O S, OSEN K S,et al .Na-Zn liquid metal battery[J].Journal of Power Sources,2016,332:274-280. doi:10.1016/j.jpowsour.2016.09.125 |
41 | GUO X, DING Y, GAO H,et al .A ternary hybrid-cation room-temperature liquid metal Battery and interfacial selection mechanism study[J].Advanced Materials,2020,32(22):2000316. doi:10.1002/adma.202000316 |
42 | DING Y, GUO X, QIAN Y,et al .Low-temperature multielement fusible alloy-based molten sodium batteries for grid-scale energy storage[J].ACS Central Science,2020,6(12):2287-8893. doi:10.1021/acscentsci.0c01035 |
43 | DING Y, GUO X, QIAN Y,et al .Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting[J].Advanced Materials,2020,32(30):2002577. doi:10.1002/adma.202002577 |
44 | SPATOCCO B L, OUCHI T, LAMBOTTE G,et al .Low-temperature molten salt electrolytes for membrane-free sodium metal batteries[J].Journal of the Electrochemical Society,2015,162(14):2729-2736. doi:10.1149/2.0441514jes |
45 | 高成炼 .锂铋液态金属电池放电过程的数值研究[D].武汉:华中科技大学,2020. doi:10.1109/icist49303.2020.9202216 |
GAO C L .Numerical study on discharge process of li||bi liquid metal battery[D].Wuhan:Huazhong University of Science and Technology,2020. doi:10.1109/icist49303.2020.9202216 | |
46 | WEBER N, GALINDO V, STEFANI F,et al .Numerical simulation of the Tayler instability in liquid metals[J].Physics,2012,15(4):43034-43052. doi:10.1088/1367-2630/15/4/043034 |
47 | KÖLLNER T, BOECK T, SCHUMACHER J .Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model[J].Physical Review E,2017,95(5):53114. doi:10.1103/physreve.95.053114 |
48 | 王晟,闫帅,李浩秒,等 .基于正则化方法的电池阻抗谱弛豫时间分布解析[J].中国电机工程学报,2022,42(9):3177-3188. |
WANG S, YAN S, LI H M,et al .Distribution of relaxation times analysis from battery impedance spectroscopy using regularization method[J].Proceedings of the CSEE,2022,42(9):3177-3188. | |
49 | 林靖,王晟,李浩秒,等 .液态金属电池的温度特性[J].中国电机工程学报,2021,41(4):1458-1468. |
LIN J, WANG S, LI H M,et al .Temperature characteristics of liquid metal batteries[J].Proceedings of the CSEE,2021,41(4):1458-1468. | |
50 | SHI Q, GUO Z, WANG S,et al .Physics-based fractional-order model and parameters identification of liquid metal battery[J].Electrochimica Acta,2022,428:140916. doi:10.1016/j.electacta.2022.140916 |
51 | GUO Z, XU C, LI W,et al .Numerical study on the thermal management system of a liquid metal battery module[J].Journal of Power Sources,2018,392,181-192. doi:10.1016/j.jpowsour.2018.04.094 |
52 | LIU G, XU C, LI H,et al .State of charge and online model parameters co-estimation for liquid metal batteries[J].Applied Energy,2019,250:677-684. doi:10.1016/j.apenergy.2019.05.032 |
53 | XU C, ZHANG E, YAN S,et al .State of charge estimation for liquid metal battery based on an improved sliding mode observer[J].Journal of Energy Storage,2022,45:103701. doi:10.1016/j.est.2021.103701 |
54 | SUN X, SONG Z, XU T .Design of two-stage active equalization system for liquid metal battery module[C]//Conference on Power and Renewable Energy.Shanghai:IEEE,2021:961-966. doi:10.1109/icpre52634.2021.9635297 |
55 | 张娥,徐成,王晟,等 .基于模糊逻辑控制器的液态金属电池组两级均衡系统[J].中国电机工程学报,2020,40(12):4024-4033. |
ZHANG E, XU C, WANG S,et al .Two-stage equalizing system of liquid metal batteries based on fuzzy logic controller[J].Proceedings of the CSEE,2020,40(12):4024-4033. | |
56 | CAI M, ZHANG E, LIN J,et al .Route optimization battery equalization for series connected liquid metal battery strings[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC).Wuhan:IEEE,2021:1-5. doi:10.1109/cieec50170.2021.9510593 |
[1] | Xiuxiun HAN, Shaoxin WEI, Jian WANG, Chaojie CUI, Weizhong QIAN. Preparation and Performance Analysis of High Performance Cathode Material Graphene-Mesoporous Carbon Composites for Lithium-Ion Capacitor [J]. Power Generation Technology, 2024, 45(3): 494-507. |
[2] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[3] | Lin LIU, Dalong WANG, Xiao QI, Zhenbo ZHOU, Huanxin LIN, Chuanwei CAI. Study on Double Phase-Locked Loop on the Synthetic Inertia Control of Offshore Wind Farm Frequency Regulation [J]. Power Generation Technology, 2024, 45(2): 282-290. |
[4] | Jie YANG, Zhe SUN, Xinyi SU, Gang LU, Bo YUAN. A Wireless Multi-Objective Power Sharing Method for Energy Storage System in DC Micro-Grid Considering Oscillatory-Type Power [J]. Power Generation Technology, 2024, 45(2): 341-352. |
[5] | Hongjun FU, Shaoxuan ZHU, Buhua WANG, Yan XIE, Haoqing XIONG, Xiaojun TANG, Xiaoyong DU, Chenghao LI, Xiaomeng LI. Risk Prediction Method of Low Frequency Oscillation in Maintenance Power Network Based on Long Short Term Memory Neural Network [J]. Power Generation Technology, 2024, 45(2): 353-362. |
[6] | Hongbo LIU, Shencheng LIU, Xueyang GAI, Yongfa LIU, Yutong YAN. Overview of Active Distribution Network Planning With High Proportion of New Energy Access [J]. Power Generation Technology, 2024, 45(1): 151-161. |
[7] | Xiaojie PAN, Youping XU, Zhijun XIE, Yukun WANG, Mujie ZHANG, Mengxuan SHI, Kun MA, Wei HU. Power System Transient Stability Preventive Control Optimization Method Driven by Stacking Ensemble Learning [J]. Power Generation Technology, 2023, 44(6): 865-874. |
[8] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[9] | Bofei WANG, Haozhe XIAO, Guohao LI, Wenheng XIU, Yunhao MO, Mingjie ZHU, Zhen WU. A Review of Energy Management Strategy for Hydrogen-Electricity Hybrid Power System Based on Control Target [J]. Power Generation Technology, 2023, 44(4): 452-464. |
[10] | Chunyan ZHANG, Zhenlan DOU, Jun WANG, Liangliang ZHU, Xiaotong SUN, Gendi LI. Development Route of Hydrogen Production by Water Electrolysis, Hydrogen Storage and Hydrogen Supply in Power System [J]. Power Generation Technology, 2023, 44(3): 305-317. |
[11] | Hao WU, Xiao XU, Zinan PENG, Ninghui GUO, Qifeng WANG. Research on Electrical Equipment Big Data Mobile Laboratory Based on Power Grid Cloud Data Management and Its Application [J]. Power Generation Technology, 2023, 44(3): 417-424. |
[12] | Jiangwu DU, Xiaoqiang TANG, Zhiwei LUO, Dunnan LIU, Jixu CHEN, Erfeng XU, Sheng BI. Pricing Method for Season of Use in Integrated Energy Park [J]. Power Generation Technology, 2023, 44(2): 261-269. |
[13] | Xin YIN, Feng ZHANG, Balati ADILI, Xiqiang CHANG, Wuhui CHEN, Changjun LI, Xueming LI, Shaowei YUAN. Study on Participation of Electricity-driven Thermal Load in Real-time Scheduling of New Power System [J]. Power Generation Technology, 2023, 44(1): 115-124. |
[14] | Chen DONG, Qiang WU, He HUANG, Rui ZHANG, Xiuyuan YANG. Power Grid Topology Identification Based on Immune Algorithm [J]. Power Generation Technology, 2023, 44(1): 125-135. |
[15] | Qian GAO, Junyi YANG, Yu HONG, Xiaolei SUN, Qianjin ZHU, Tian YU, Xin WANG, Linyuan WANG, Zesen LI. Research on Digital Transformation Architecture and Path of Power Grid Development Planning Business Under New Power System Blueprint [J]. Power Generation Technology, 2022, 43(6): 851-859. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||