Power Generation Technology ›› 2024, Vol. 45 ›› Issue (4): 590-599.DOI: 10.12096/j.2096-4528.pgt.23015
• Power Generation and Environmental Protection • Previous Articles Next Articles
Zhonglin XIA1, Wentong CHEN2, Shuqiao XU1, Zhongsheng WU2, Qiang XIE1, Shuangchen MA1, Jingxiang MA1
Received:
2023-12-20
Revised:
2024-03-16
Published:
2024-08-31
Online:
2024-08-27
Contact:
Jingxiang MA
Supported by:
CLC Number:
Zhonglin XIA, Wentong CHEN, Shuqiao XU, Zhongsheng WU, Qiang XIE, Shuangchen MA, Jingxiang MA. Application Status and Existing Problem Analysis of the Natural Draft Cooling Towers With Flue Gas Injection Technology in Thermal Power Plants[J]. Power Generation Technology, 2024, 45(4): 590-599.
大气状态 | 不同风速下烟气抬升高度/m | |||
---|---|---|---|---|
0.5 m/s | 1.5 m/s | 3.0 m/s | 4.5 m/s | |
不稳定 | 1 100 | 1 000 | 800 | 300 |
中性 | 750 | 300 | 200 | 150 |
稳定 | 250 | 150 | 120 | 80 |
Tab. 1 Relationship between smoke lift height and atmospheric state
大气状态 | 不同风速下烟气抬升高度/m | |||
---|---|---|---|---|
0.5 m/s | 1.5 m/s | 3.0 m/s | 4.5 m/s | |
不稳定 | 1 100 | 1 000 | 800 | 300 |
中性 | 750 | 300 | 200 | 150 |
稳定 | 250 | 150 | 120 | 80 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
电导率/(μS⋅cm-1) | 957 | Cl-质量浓度/(mg⋅L-1) | 30.00 |
pH值 | 2.55 | NO3-质量浓度/(mg⋅L-1) | 2.50 |
Cu2+质量浓度/(mg⋅L-1) | 0.002 7 | NO2-质量浓度/(mg⋅L-1) | 0.00 |
Fe3+质量浓度/(mg⋅L-1) | 25.48 | SO42-质量浓度/(mg⋅L-1) | 160.00 |
Fe2+质量浓度/(mg⋅L-1) | 2.30 | SO32-质量浓度/(mg⋅L-1) | 6.05 |
Al3+质量浓度/(mg⋅L-1) | 0.096 5 | 总硫质量浓度/(mg⋅L-1) | 59.38 |
Na+质量浓度/(mg⋅L-1) | 0.620 1 | S2-质量浓度/(mg⋅L-1) | 0.006 0 |
K+质量浓度/(mg⋅L-1) | 0.284 7 | 总磷质量浓度/(mg⋅L-1) | 0.007 5 |
Ba2+质量浓度/(mg⋅L-1) | 0.006 5 | Ca2+质量浓度/(mg⋅L-1) | 1.185 0 |
Sr2+质量浓度/(mg⋅L-1) | 0.007 2 | Mg2+质量浓度/(mg⋅L-1) | 0.281 5 |
Tab. 2 Composition analysis of flue gas condensation
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
电导率/(μS⋅cm-1) | 957 | Cl-质量浓度/(mg⋅L-1) | 30.00 |
pH值 | 2.55 | NO3-质量浓度/(mg⋅L-1) | 2.50 |
Cu2+质量浓度/(mg⋅L-1) | 0.002 7 | NO2-质量浓度/(mg⋅L-1) | 0.00 |
Fe3+质量浓度/(mg⋅L-1) | 25.48 | SO42-质量浓度/(mg⋅L-1) | 160.00 |
Fe2+质量浓度/(mg⋅L-1) | 2.30 | SO32-质量浓度/(mg⋅L-1) | 6.05 |
Al3+质量浓度/(mg⋅L-1) | 0.096 5 | 总硫质量浓度/(mg⋅L-1) | 59.38 |
Na+质量浓度/(mg⋅L-1) | 0.620 1 | S2-质量浓度/(mg⋅L-1) | 0.006 0 |
K+质量浓度/(mg⋅L-1) | 0.284 7 | 总磷质量浓度/(mg⋅L-1) | 0.007 5 |
Ba2+质量浓度/(mg⋅L-1) | 0.006 5 | Ca2+质量浓度/(mg⋅L-1) | 1.185 0 |
Sr2+质量浓度/(mg⋅L-1) | 0.007 2 | Mg2+质量浓度/(mg⋅L-1) | 0.281 5 |
1 | 崔克强,胡文庆,王艳,等 .燃煤电厂排烟方式对比研究[J].中国电力,2006,39(10):73-76. |
CUI K Q, HU W Q, WANG Y,et al .Comparative research on the flue gas exhausting methods in coal-fired power plants[J].Electric Power,2006,39(10):73-76. | |
2 | 曾德勇 .烟塔合一工程综合调研[J].电力建设,2007,28(3):41-45. doi:10.3969/j.issn.1000-7229.2007.03.012 |
ZENG D Y .Survey on engineering synthesis of natural draft cooling tower (NDCT) with flue gas injection[J].Electric Power Construction,2007,28(3):41-45. doi:10.3969/j.issn.1000-7229.2007.03.012 | |
3 | 安吉振,郑福豪,刘一帆,等 .基于大数据分析的火电机组引风机故障预警研究[J].发电技术,2023,44(4):557-564. doi:10.12096/j.2096-4528.pgt.21111 |
AN J Z, ZHENG F H, LIU Y F,et al .Study on induced draft fan fault warning of thermal power unit based on big data analysis[J].Power Generation Technology,2023,44(4):557-564. doi:10.12096/j.2096-4528.pgt.21111 | |
4 | 陈义珍,赵丹,柴发合,等 .烟塔合一排放参数试验及特征[J].环境科学研究,2010,23(5):543-547. |
CHEN Y Z, ZHAO D, CHAI F H,et al .Emission parameters experimentation and characteristics of cooling towers with flue gas injection[J].Research of Environmental Sciences,2010,23(5):543-547. | |
5 | 赵丹,陈义珍,柴发合,等 .烟塔合一排放的SF6示踪扩散试验[J].环境科学研究,2010,23(5):548-554. doi:10.1631/jzus.A1000244 |
ZHAO D, CHEN Y Z, CHAI F H,et al .Atmospheric diffusion experiments with tracer gas SF6 on cooling towers with flue gas injection emission[J].Research of Environmental Sciences,2010,23(5):548-554. doi:10.1631/jzus.A1000244 | |
6 | 莫华,刘思湄 .燃煤电厂“烟塔合一”技术在环评技术评估中存在的问题与建议[J].电力环境保护,2009,25(3):48-50. doi:10.3969/j.issn.1674-8069.2009.03.015 |
MO H, LIU S M .Existing question and recommendation for the technological evaluation of natural draft cooling towers (NDCT) with flue gas injection[J].Electric Power Technology and Environmental Protection,2009,25(3):48-50. doi:10.3969/j.issn.1674-8069.2009.03.015 | |
7 | 张晓旭,李志强,刘盛,等 .燃煤电厂烟塔合一排烟方式环境影响分析[J].资源节约与环保,2016(6):19. doi:10.3969/j.issn.1673-2251.2016.06.013 |
ZHANG X X, LI Z Q, LIU S,et al .Environmental impact analysis of smoke exhaust mode with integrated smoke tower in coal-fired power plant[J].Resources Economization & Environmental Protection,2016(6):19. doi:10.3969/j.issn.1673-2251.2016.06.013 | |
8 | 王康慧,杨柳,盛重义,等 .烟塔合一排烟对近距离环境影响的预测研究[J].热能动力工程,2020,35(5):176-182. doi:10.16146/j.cnki.rndlgc.2020.05.025 |
WANG K H, YANG L, SHENG Z Y,et al .Prediction study on the effect of flue gas discharge from natural draft cooling tower on nearby atmosphere environment[J].Journal of Engineering for Thermal Energy and Power,2020,35(5):176-182. doi:10.16146/j.cnki.rndlgc.2020.05.025 | |
9 | 张全斌 .排烟空冷塔结构腐蚀机理与表面防护[J].涂料工业,2017,47(9):57-63. |
ZHANG Q B .Concrete corrosion mechanism and surface anticorrosion of exhaust air cooling tower[J].Paint & Coatings Industry,2017,47(9):57-63. | |
10 | 张迎新,刘洪群,何积铨 .排烟冷却塔防腐涂料对混凝土碳化的防护作用[J].涂料工业,2009,39(11):67-70. doi:10.3969/j.issn.0253-4312.2009.11.018 |
ZHANG Y X, LIU H Q, HE J Q .Protection of concrete from carbonization with anticorrozion coatings on fume cooling tower[J].Paint & Coatings Industry,2009,39(11):67-70. doi:10.3969/j.issn.0253-4312.2009.11.018 | |
11 | 杨万国,张波,杨朝晖,等 .烟塔合一排烟空冷塔的腐蚀与防护[J].全面腐蚀控制,2016,30(5):63-68. doi:10.13726/j.cnki.11-2706/tq.2016.05.063.06 |
YANG W G, ZHANG B, YANG Z H,et al .The corrosion and protection for exhaust air-cooling tower using cooling tower and chimney unification technique[J].Total Corrosion Control,2016,30(5):63-68. doi:10.13726/j.cnki.11-2706/tq.2016.05.063.06 | |
12 | 李志强,周阳,黄浩云 .烟塔合一类环评项目大气预测模型对比与选择[C]//2010中国环境科学学会学术年会论文集(第二卷).天津:天津市环境保护科学研究院,2010:1699-1702. doi:10.1016/j.proenv.2010.10.023 |
LI Z Q, ZHOU Y, HUANG H Y .Comparison and selection of atmospheric prediction models for environmental impact assessment projects of integrated chimney cooling tower[J].Proceedings of the 2010 Chinese Society for Environmental Science Annual Conference (Volume II).Tianjin:Tianjin Academy of Environmental Sciences,2010:1699-1702. doi:10.1016/j.proenv.2010.10.023 | |
13 | 孔德满,袁益超 .烟塔合一间接空冷塔腐蚀环境的数值模拟[J].广州化学,2019,44(2):39-47. doi:10.16560/j.cnki.gzhx.20190212 |
KONG D M, YUAN Y C .Numerical simulation of corrosion environment of indirect air cooling tower with flue gas injection[J].Guangzhou Chemistry,2019,44(2):39-47. doi:10.16560/j.cnki.gzhx.20190212 | |
14 | 李先宏 .电厂循环水化学腐蚀结垢影响因素与控制研究[J].盐科学与化工,2021,50(10):5-8. doi:10.3969/j.issn.2096-3408.2021.10.002 |
LI X H .Study on influencing factors and control of chemical corrosion and scaling in circulating water of power plant[J].Journal of Salt Science and Chemical Industry,2021,50(10):5-8. doi:10.3969/j.issn.2096-3408.2021.10.002 | |
15 | 于金山,赵春海 .烟塔合一技术对循环水水质的影响[J].东北电力大学学报,2012,32(6):47-50. doi:10.3969/j.issn.1005-2992.2012.06.010 |
YU J S, ZHAO C H .The effect about technology of integrated chimney cooling tower in circulating cooling water quality change[J].Journal of Northeast Electric Power University,2012,32(6):47-50. doi:10.3969/j.issn.1005-2992.2012.06.010 | |
16 | 张占梅,何世德,李锐,等 .烟塔合一技术用于循环冷却水处理[J].工业水处理,2009,29(8):89-92. doi:10.3969/j.issn.1005-829X.2009.08.027 |
ZHANG Z M, HE S D, LI R,et al .Technology of circulating cooling water treatment for cooling tower with flue gas injection[J].Industrial Water Treatment,2009,29(8):89-92. doi:10.3969/j.issn.1005-829X.2009.08.027 | |
17 | 杨树旺 .烟塔合一技术对环境及循环水质影响的分析与研究[D].北京:华北电力大学,2013. |
YANG S W .Analysis and research on the influence of smoke tower integration technology on environment and circulating water quality[D].Beijing:North China Electric Power University,2013. | |
18 | 曾德勇,罗奖合 .由冷却塔排放烟气脱硫净烟气对循环冷却水水质的影响及其对策研究[J].热力发电,2005,34(3):61-64. doi:10.3969/j.issn.1002-3364.2005.03.021 |
ZENG D Y, LUO J H .Influence of purified flue gas dischar-ging from fgd facility through cooling tower upon quality of circulatory cooling water and study on counter measures the reof[J].Thermal Power Generation,2005,34(3):61-64. doi:10.3969/j.issn.1002-3364.2005.03.021 | |
19 | 何世德,李锐,张占梅,等 .燃煤电厂“烟塔合一”模式下循环冷却水处理技术[J].电力科技与环保,2011,27(2):29-31. doi:10.3969/j.issn.1674-8069.2011.02.008 |
HE S D, LI R, ZHANG Z M,et al .Technology of circulating cooling water treatment for cooling tower with flue gas injection in power plant[J].Electric Power Technology and Environmental Protection,2011,27(2):29-31. doi:10.3969/j.issn.1674-8069.2011.02.008 | |
20 | 李立峰,张树深 .“烟塔合一”技术的应用现状及有关问题的探讨[J].能源环境保护,2010,24(4):48-50. doi:10.3969/j.issn.1006-8759.2010.04.016 |
LI L F, ZHANG S S .The application actuality and brief discussion on the existing questions on natural draft cooling towers (NDCT) with flue gas injection in coal-fired power plants[J].Energy Environmental Protection,2010,24(4):48-50. doi:10.3969/j.issn.1006-8759.2010.04.016 | |
21 | 马悦,张壮 .火电厂“烟塔合一”技术及其应用[J].能源工程,2010(3):58-62. doi:10.3969/j.issn.1004-3950.2010.03.014 |
MA Y, ZHANG Z .The technology and utilization of natural draft cooling tower with flue gas injection in power plant[J].Energy Engineering,2010(3):58-62. doi:10.3969/j.issn.1004-3950.2010.03.014 | |
22 | 孙宁 .浅谈火力发电厂中烟塔合一技术[J].低碳世界,2021,11(10):48-49. |
SUN N .Discussion on the integration technology of smoke tower in thermal power plant[J].Low Carbon World,2021,11(10):48-49. | |
23 | 韩月荣 .烟塔合一技术的环保优势[J].河北电力技术,2005,24(3):36-39. doi:10.3969/j.issn.1001-9898.2005.03.015 |
HAN Y R .Superiority of environmental protection of the technology of cooling water in place of chimney combining tower[J].Hebei Electric Power,2005,24(3):36-39. doi:10.3969/j.issn.1001-9898.2005.03.015 | |
24 | 王梦洁 .“三塔合一” 间接空冷系统热力性能分析和优化研究[D].北京:华北电力大学,2016. |
WANG M J .Thermal performance analysis and optimization of “three towers in one” indirect air cooling system[D].Beijing:North China Electric Power University,2016. | |
25 | 李金芳,韩高岩,谢娜,等 .三塔合一间接空冷塔烟气流动特性研究[J].浙江电力,2023,42(2):106-116. |
LI J F, HAN G Y, XIE N,et al .Characteristic study on flue gas of a “three-in-one” indirect air cooling tower[J].Zhejiang Electric Power,2023,42(2):106-116. | |
26 | 刘昆 .三塔合一间接空冷系统变工况运行特性研究[D].北京:华北电力大学,2021. |
LIU K .Study on operating characteristics of three-tower integrated indirect air cooling system under off-design conditions[D].Beijing:North China Electric Power University,2021. | |
27 | 马晓峰 .浅析火电厂脱硫烟塔合一技术的应用[J].科技情报开发与经济,2011(12):148-150. |
MA X F .Discussion on the application of cooling-tower and chimney integration technology in thermal power plant’s desulphurization[J].Sci-Tech Information Development & Economy,2011(12):148-150. | |
28 | 温凯 .烟塔合一技术环境影响及经济分析[J].当代石油石化,2012,20(1):19-22. |
WEN K .The environmental influence of smoke tower integration technology and the analysis of its economics[J].Petroleum & Petrochemical Today,2012,20(1):19-22. | |
29 | 莫华 .探讨“烟塔合一”技术在环评中大气环境的防护距离[J].环境保护科学,2010,36(6):39-41. |
MO H .Discussion on atmospheric environment protection zone in environmental impact assessment about technology of natural draft cooling towers with flue gas injection[J].Environmental Protection Science,2010,36(6):39-41. | |
30 | 吴永杰,戴永阳,姚晔 .燃煤电厂湿烟囱烟羽下洗治理研究及应用[J].能源环境保护,2019,33(5):39-43. |
WU Y J, DAI Y Y, YAO Y .Research and application of the treatment of wet stack plume downwash in coal-fired power plant[J].Energy Environmental Protection,2019,33(5):39-43. | |
31 | 朱明奕,张晓旭,李志强,等 .采用数值与物理风洞确定烟塔合一类项目环境防护距离[J].环境影响评价,2017,39(4):57-59. |
ZHU M Y, ZHANG X X, LI Z Q,et al .Buffer zone of natural draft cooling towers (NDCT) with flue gas injection by numerical wind tunnel and physical wind tunnel[J].Environmental Impact Assessment,2017,39(4):57-59. | |
32 | DU J, ZHUANG W, LI G,et al .Influence of flue gas injection on the long-term durability of a natural draft concrete cooling tower[J].Materials,2019,12(13):2038. doi:10.3390/ma12132038 |
33 | 姚友成,侯宪安 .烟塔合一的冷却塔腐蚀与防护[J].电力勘测设计,2006(5):17-20. |
YAO Y C, HOU X A .Corrosion and protection of NDCT with flue gas discharge[J].Electric Power Survey & Design,2006(5):17-20. | |
34 | 刘绍中 .冷却塔混凝土防腐蚀研究[J].内燃机与配件,2016(12):117-118. |
LIU S Z .Study on corrosion protection of cooling tower concrete[J].Internal Combustion Engine & Parts,2016(12):117-118. | |
35 | 姜大刚 .发电厂排烟冷却塔防腐体系设计[J].华电技术,2009,31(8):74-77. doi:10.3969/j.issn.1674-1951.2009.08.024 |
JIANG D G .Design of anti-corrosion system for flue gas cooling tower in power plant[J].Huadian Technology,2009,31(8):74-77. doi:10.3969/j.issn.1674-1951.2009.08.024 | |
36 | 李化芝 .浅谈排烟冷却塔防腐施工工艺[J].科技创业家,2012(20):82. |
LI H Z .Discussion on anticorrosion construction technology of smoke exhaust cooling tower[J].Technological Pioneers,2012(20):82. | |
37 | 尹宝聚 .火电厂“烟塔合一”防腐修复新工艺[J].江西化工,2018(5):215-217. |
YIN B J .New anticorrosion and restoration technology of “smoke tower in one” in thermal power plant[J].Jiangxi Chemical Industry,2018(5):215-217. | |
38 | 郭军科,于金山,邵林,等 .排烟冷却塔烟气结露液体对循环水水质的影响[J].工业水处理,2014,34(12):65-67. |
GUO J K, YU J S, SHAO L,et al .Effect of draft cooling tower flue gas condensed liquid on the quality of circulating water[J].Industrial Water Treatment,2014,34(12):65-67. | |
39 | 魏源送,郑利兵,张春,等 .热电厂中水回用深度处理技术与国内应用进展[J].水资源保护,2018,34(6):1-11. doi:10.3880/j.issn.1004-6933.2018.06.01 |
WEI Y S, ZHENG L B, ZHANG C,et al .Progress of application and research of advanced treatment technologies for reclaimed water reuse in thermal power generation plant in China[J].Water Resources Protection,2018,34(6):1-11. doi:10.3880/j.issn.1004-6933.2018.06.01 | |
40 | 王国邦 .电厂闭式循环冷却水水质异常原因分析[J].造纸装备及材料,2021(12):54-56. |
WANG G B .Cause analysis of abnormal water quality of closed circulating cooling water in power plant[J].Papermaking Equipment & Materials,2021(12):54-56. | |
41 | 王志明,潘欣全,何伟男,等 .蒸发冷却空气参数计算及其在湿式蒸发冷却塔节水节能中的应用[J].发电技术,2021,42(5):604-613. |
WANG Z M, PAN X Q, HE W N,et al .Calculation of evaporative cooling air parameters and relevant applications in wet evaporative cooing tower water and energy saving[J].Power Generation Technology,2021,42(5):604-613. |
[1] | Sike SHAN, Hanxiao LIU, Meiling LIU, Shuai WANG, Ying CUI. Review of Carbon Footprint for Thermal Power Industry in China [J]. Power Generation Technology, 2024, 45(4): 575-589. |
[2] | Wang LIU, Lian CHEN, Gaoyang GONG, Zhihua LI, Wenhua XUE, Jingang SHI, Jun XIE, Leilei LI, Rongcai YAO, Zhaopeng WANG, Yanxi YANG, Yi DENG, Chenhui ZHANG. Research on Predictive Maintenance Mode of Air Preheater Based on Digital Twin [J]. Power Generation Technology, 2024, 45(4): 622-632. |
[3] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[4] | Xiaofeng CHEN, Chuan ZUO, Ning ZHAO, Kai HUANG, Huijie WANG. Analysis on Peak Regulation Characteristics of Thermal Power Units With Integrated Heat Storage Device [J]. Power Generation Technology, 2024, 45(3): 392-400. |
[5] | Jiahai YUAN, Yuelin HU, Jian ZHANG. The Carbon Emission Efficiency of China’s Listed Thermal Power Companies: An Improved Three-Stage Slack Based Measure-Data Envelopment Analysis Model [J]. Power Generation Technology, 2024, 45(3): 458-467. |
[6] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[7] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[8] | Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU. Analysis on Thermoelectric Decoupling Technology Paths for Thermal Power Units Under the Background of Deep Peak-Shaving [J]. Power Generation Technology, 2024, 45(2): 207-215. |
[9] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[10] | Zhan LI, Zhenyong YANG, Lei LIU, Zhensan CHEN, Weiming JI, Feng HONG. Analysis of the Influence of Furnace Side Heat Storage Coefficient on Primary Frequency Modulation Capacity Under Deep Modulation Condition of Thermal Power Unit [J]. Power Generation Technology, 2024, 45(2): 226-232. |
[11] | Zheng YANG, Yipeng SUN, Zhiqiang WEN, Liang CHENG, Zhanguo LI. Research on Dry-Wet Conversion Strategy of Supercritical Thermal Power Units Under Deep Peaking Condition [J]. Power Generation Technology, 2024, 45(2): 233-239. |
[12] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
[13] | Haiwei JIANG, Mingming GAO, Jie LI, Haoyang YU, Guangxi YUE, Zhong HUANG. Modeling and Dynamic Characteristic Analysis of Combustion Process of Biomass Vibrating Grate Furnace [J]. Power Generation Technology, 2024, 45(2): 250-259. |
[14] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[15] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||