Power Generation Technology ›› 2024, Vol. 45 ›› Issue (4): 600-610.DOI: 10.12096/j.2096-4528.pgt.23162
• Power Generation and Environmental Protection • Previous Articles Next Articles
Yongjun LUO1, Jianbo LI2, Hongyan ZHU2
Received:
2023-12-04
Revised:
2024-03-07
Published:
2024-08-31
Online:
2024-08-27
Contact:
Jianbo LI
Supported by:
CLC Number:
Yongjun LUO, Jianbo LI, Hongyan ZHU. Experimental Study on Sintering and Melting Characteristics and Mineral Transformation Law of Synthetic Biomass Ash[J]. Power Generation Technology, 2024, 45(4): 600-610.
样品 | 化学成分质量分数/% | |||||
---|---|---|---|---|---|---|
SiO2 | CaO | MgO | Al2O3 | Fe2O3 | Na2SO4 | |
1 | 7.50 | 69.16 | 6.78 | 2.50 | 2.03 | 4.65 |
2 | 7.50 | 60.50 | 5.94 | 2.50 | 1.78 | 4.08 |
3 | 7.50 | 43.22 | 4.24 | 2.50 | 1.27 | 3.96 |
4 | 7.50 | 69.16 | 6.78 | 2.50 | 2.03 | 4.65 |
5 | 7.50 | 60.50 | 5.94 | 2.50 | 1.78 | 4.08 |
6 | 7.50 | 43.22 | 4.24 | 2.50 | 1.27 | 3.96 |
7 | 7.50 | 69.16 | 6.78 | 2.50 | 2.03 | 4.65 |
8 | 7.50 | 60.50 | 5.94 | 2.50 | 1.78 | 4.08 |
9 | 7.50 | 43.22 | 4.24 | 2.50 | 1.27 | 3.96 |
10 | 37.50 | 34.58 | 3.39 | 12.50 | 1.02 | 2.34 |
11 | 37.50 | 25.94 | 2.54 | 12.50 | 0.76 | 1.74 |
12 | 37.50 | 8.65 | 0.85 | 12.50 | 0.25 | 0.57 |
13 | 37.50 | 34.58 | 3.39 | 12.50 | 1.02 | 2.34 |
14 | 37.50 | 25.94 | 2.54 | 12.50 | 0.76 | 1.74 |
15 | 37.50 | 8.65 | 0.85 | 12.50 | 0.25 | 0.57 |
16 | 37.50 | 34.58 | 3.39 | 12.50 | 1.02 | 2.34 |
17 | 37.50 | 25.94 | 2.54 | 12.50 | 0.76 | 1.74 |
18 | 37.50 | 8.65 | 0.85 | 12.50 | 0.25 | 0.57 |
Tab. 1 Chemical composition of synthetic biomass ash
样品 | 化学成分质量分数/% | |||||
---|---|---|---|---|---|---|
SiO2 | CaO | MgO | Al2O3 | Fe2O3 | Na2SO4 | |
1 | 7.50 | 69.16 | 6.78 | 2.50 | 2.03 | 4.65 |
2 | 7.50 | 60.50 | 5.94 | 2.50 | 1.78 | 4.08 |
3 | 7.50 | 43.22 | 4.24 | 2.50 | 1.27 | 3.96 |
4 | 7.50 | 69.16 | 6.78 | 2.50 | 2.03 | 4.65 |
5 | 7.50 | 60.50 | 5.94 | 2.50 | 1.78 | 4.08 |
6 | 7.50 | 43.22 | 4.24 | 2.50 | 1.27 | 3.96 |
7 | 7.50 | 69.16 | 6.78 | 2.50 | 2.03 | 4.65 |
8 | 7.50 | 60.50 | 5.94 | 2.50 | 1.78 | 4.08 |
9 | 7.50 | 43.22 | 4.24 | 2.50 | 1.27 | 3.96 |
10 | 37.50 | 34.58 | 3.39 | 12.50 | 1.02 | 2.34 |
11 | 37.50 | 25.94 | 2.54 | 12.50 | 0.76 | 1.74 |
12 | 37.50 | 8.65 | 0.85 | 12.50 | 0.25 | 0.57 |
13 | 37.50 | 34.58 | 3.39 | 12.50 | 1.02 | 2.34 |
14 | 37.50 | 25.94 | 2.54 | 12.50 | 0.76 | 1.74 |
15 | 37.50 | 8.65 | 0.85 | 12.50 | 0.25 | 0.57 |
16 | 37.50 | 34.58 | 3.39 | 12.50 | 1.02 | 2.34 |
17 | 37.50 | 25.94 | 2.54 | 12.50 | 0.76 | 1.74 |
18 | 37.50 | 8.65 | 0.85 | 12.50 | 0.25 | 0.57 |
等级 | 类别 | 特征 |
---|---|---|
0 | 附着灰 | 无黏聚特征,灰粒间呈松散堆积状 |
1 | 微黏聚灰渣 | 已有灰粒的黏聚特征,易刮除,呈疏松状 |
2 | 弱黏聚灰渣 | 有一定的黏聚特征,较易刮除,有一定硬度 |
3 | 黏聚灰渣 | 黏聚在一起,硬度比强黏聚灰渣弱,较难刮除 |
4 | 强黏聚灰渣 | 硬度较大,无法完全刮除,不规则地黏聚硬渣 |
5 | 黏熔灰渣 | 由全熔融和半熔融渣组成,二者之间无法分开 |
6 | 熔融灰渣 | 全熔融,残灰表面被流渣覆盖,内部泡状结构 |
Tab. 2 Sintering and melting grade division of synthetic ash
等级 | 类别 | 特征 |
---|---|---|
0 | 附着灰 | 无黏聚特征,灰粒间呈松散堆积状 |
1 | 微黏聚灰渣 | 已有灰粒的黏聚特征,易刮除,呈疏松状 |
2 | 弱黏聚灰渣 | 有一定的黏聚特征,较易刮除,有一定硬度 |
3 | 黏聚灰渣 | 黏聚在一起,硬度比强黏聚灰渣弱,较难刮除 |
4 | 强黏聚灰渣 | 硬度较大,无法完全刮除,不规则地黏聚硬渣 |
5 | 黏熔灰渣 | 由全熔融和半熔融渣组成,二者之间无法分开 |
6 | 熔融灰渣 | 全熔融,残灰表面被流渣覆盖,内部泡状结构 |
A/B | 钾盐 | 质量分数/% | 烧结等级 | ||
---|---|---|---|---|---|
750 ℃ | 850 ℃ | 950 ℃ | |||
0.1 | K2CO3 | 10 | 1 | 1 | 3 |
20 | 2 | 2 | 3 | ||
40 | 2 | 4 | 5 | ||
KCl | 10 | 1 | 1 | 2 | |
20 | 2 | 2 | 3 | ||
40 | 2 | 2 | 4 | ||
K2SO4 | 10 | 1 | 1 | 2 | |
20 | 1 | 2 | 3 | ||
40 | 2 | 2 | 4 | ||
1.0 | K2CO3 | 10 | 3 | 3 | 4 |
20 | 3 | 4 | 5 | ||
40 | 4 | 5 | 6 | ||
KCl | 10 | 2 | 3 | 4 | |
20 | 3 | 3 | 4 | ||
40 | 3 | 4 | 5 | ||
K2SO4 | 10 | 1 | 1 | 4 | |
20 | 2 | 2 | 4 | ||
40 | 3 | 3 | 4 |
Tab. 3 Sintering and melting degree of synthetic ash at 750-950 ℃
A/B | 钾盐 | 质量分数/% | 烧结等级 | ||
---|---|---|---|---|---|
750 ℃ | 850 ℃ | 950 ℃ | |||
0.1 | K2CO3 | 10 | 1 | 1 | 3 |
20 | 2 | 2 | 3 | ||
40 | 2 | 4 | 5 | ||
KCl | 10 | 1 | 1 | 2 | |
20 | 2 | 2 | 3 | ||
40 | 2 | 2 | 4 | ||
K2SO4 | 10 | 1 | 1 | 2 | |
20 | 1 | 2 | 3 | ||
40 | 2 | 2 | 4 | ||
1.0 | K2CO3 | 10 | 3 | 3 | 4 |
20 | 3 | 4 | 5 | ||
40 | 4 | 5 | 6 | ||
KCl | 10 | 2 | 3 | 4 | |
20 | 3 | 3 | 4 | ||
40 | 3 | 4 | 5 | ||
K2SO4 | 10 | 1 | 1 | 4 | |
20 | 2 | 2 | 4 | ||
40 | 3 | 3 | 4 |
温度/℃ | 矿物质量分数/% | 熔融相比例/% | |||||
---|---|---|---|---|---|---|---|
KAlSiO4-HT | (Na, K)2Si2O5 | 菱硅钙钠石(Na4Ca4Si6O18) | K2Ca2Si2O7 | K2Ca6Si4O15 | 钙铁榴石(Ca3Fe2Si3O12) | ||
750 | 52.40 | 21.02 | 1.14 | 19.13 | 5.40 | 0.92 | 0 |
850 | 50.71 | 0 | 2.06 | 18.66 | 5.13 | 0.88 | 22.55 |
950 | 47.42 | 0 | 0 | 17.40 | 0 | 0.82 | 34.36 |
Tab. 4 FactSage calculation results of synthetic ash mineral components with potassium salt of K2CO3 and A/B=1.0
温度/℃ | 矿物质量分数/% | 熔融相比例/% | |||||
---|---|---|---|---|---|---|---|
KAlSiO4-HT | (Na, K)2Si2O5 | 菱硅钙钠石(Na4Ca4Si6O18) | K2Ca2Si2O7 | K2Ca6Si4O15 | 钙铁榴石(Ca3Fe2Si3O12) | ||
750 | 52.40 | 21.02 | 1.14 | 19.13 | 5.40 | 0.92 | 0 |
850 | 50.71 | 0 | 2.06 | 18.66 | 5.13 | 0.88 | 22.55 |
950 | 47.42 | 0 | 0 | 17.40 | 0 | 0.82 | 34.36 |
温度/℃ | 矿物质量分数/% | ||||
---|---|---|---|---|---|
白榴石(K2Al2Si4O12) | 硅灰石(CaSiO3) | 单斜辉石(CaMgSi2O6) | 长石(KAlSi3O8, CaAl2Si2O8) | 钙铁榴石(Ca3Fe2Si3O12) | |
750 | 69.74 | 18.51 | 7.33 | 3.87 | 0.55 |
850 | 67.99 | 18.66 | 7.24 | 5.68 | 0.27 |
950 | 27.21 | 15.04 | 6.97 | 47.18 | 0 |
Tab. 5 FactSage calculation results of synthetic ash mineral components with potassium salt of KCl and A/B=1.0
温度/℃ | 矿物质量分数/% | ||||
---|---|---|---|---|---|
白榴石(K2Al2Si4O12) | 硅灰石(CaSiO3) | 单斜辉石(CaMgSi2O6) | 长石(KAlSi3O8, CaAl2Si2O8) | 钙铁榴石(Ca3Fe2Si3O12) | |
750 | 69.74 | 18.51 | 7.33 | 3.87 | 0.55 |
850 | 67.99 | 18.66 | 7.24 | 5.68 | 0.27 |
950 | 27.21 | 15.04 | 6.97 | 47.18 | 0 |
温度/℃ | 矿物质量分数/% | |||||
---|---|---|---|---|---|---|
白榴石(K2Al2Si4O12) | 硅灰石(CaSiO3) | 黄长石(Ca2MgSi2O7) | 霞石((Na, K)AlSiO4) | 钙铁榴石(Ca3Fe2Si3O12) | KAlSiO4-HT | |
750 | 69.88 | 17.45 | 8.70 | 3.39 | 0.58 | 0 |
850 | 69.99 | 17.64 | 8.99 | 3.37 | 0.05 | 0 |
950 | 64.67 | 19.55 | 6.81 | 0 | 0 | 9.76 |
Tab. 6 FactSage calculation results of synthetic ash mineral components with potassium salt of K2SO4 and A/B=1.0
温度/℃ | 矿物质量分数/% | |||||
---|---|---|---|---|---|---|
白榴石(K2Al2Si4O12) | 硅灰石(CaSiO3) | 黄长石(Ca2MgSi2O7) | 霞石((Na, K)AlSiO4) | 钙铁榴石(Ca3Fe2Si3O12) | KAlSiO4-HT | |
750 | 69.88 | 17.45 | 8.70 | 3.39 | 0.58 | 0 |
850 | 69.99 | 17.64 | 8.99 | 3.37 | 0.05 | 0 |
950 | 64.67 | 19.55 | 6.81 | 0 | 0 | 9.76 |
1 | 郑妍,姚宣,陈训强 .生物质气化耦合发电体系的合成气组分与能量分析[J].发电技术,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 |
ZHENG Y, YAO X, CHEN X Q .Analysis of syngas components and energy in biomass gasification coupled power generation system[J].Power Generation Technology,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 | |
2 | 张政林,张惠娟,孙文治,等 .基于改进旗鱼算法的综合能源系统能量管理[J].电力系统保护与控制,2022,20(22):142-151. |
ZHENG Z L, ZHANG H J, SUN W Z,et al .Energy management of an integrated energy system based on an improved sailed fish optimizer algorithm[J].Power System Protection and Control,2022,20(22):142-151. | |
3 | LV Y, NIU Y, LIANG Y,et al .Experiment and kinetics studies on ash fusion characteristics of biomass/coal mixtures during combustion[J].Energy & Fuels,2019,33(10):10317-10323. doi:10.1021/acs.energyfuels.9b02563 |
4 | SAIDUR R, ABDELAZIZ E A, DEMIRBAS A,et al .A review on biomass as a fuel for boilers[J].Renewable and Sustainable Energy Reviews,2011,15(5):2262-2289. doi:10.1016/j.rser.2011.02.015 |
5 | 臧海祥,马铭欣,周亦洲,等 .电力市场环境下风电-光热-生物质混合电站鲁棒优化调度模型[J].电力系统保护与控制,2022,50(5):1-11. |
ZANG H X, MA M X, ZHOU Y Z,et al .Robust optimal scheduling model for a ‘wind power-concentrating solar power-biomass’ hybrid power plant in the electricity market[J].Power System Protection and Control,2023,44(3):1-14. | |
6 | 王永利,韩煦,刘晨,等 .基于生-光耦合利用的乡村电-热综合能源系统规划[J].电力建设,2023,44(3):1-14. |
WANG Y L, HAN X, LIU C,et al .Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J].Electric Power Construction,2023,44(3):1-14. | |
7 | 薛凯,王义函,陈衡,等 .槽式太阳能辅助生物质热电联产系统热力学性能分析[J].发电技术,2021,42(6):653-664. doi:10.12096/j.2096-4528.pgt.21044 |
XUE K, WANG Y H, CHEN H,et al .Thermodynamic performance analysis of a parabolic trough solar-assisted Biomass-fired cogeneration system[J].Power Generation Technology,2021,42(6):653-664. doi:10.12096/j.2096-4528.pgt.21044 | |
8 | 朱骏杰,管俊豪,岳子尧,等 .燃煤机组直接耦合生物质的模型构建与碳减排分析[J].内蒙古电力技术,2023,41(6):17-25. |
ZHU J J, GUAN J H, YUE Z Y,et al .Model construction and carbon emission reduction analysis of direct coupling of biomass in coal-fired unit[J].Inner Mongolia Electric Power,2023,41(6):17-25. | |
9 | LI Q H, ZHANG Y G, MENG A H,et al .Study on ash fusion temperature using original and simulated biomass ashes[J].Fuel Processing Technology,2013,107:107-112. doi:10.1016/j.fuproc.2012.08.012 |
10 | VASSILEV S V, BAXTER D, VASSILEVA C G .An overview of the behaviour of biomass during combustion:part II.Ash fusion and ash formation mechanisms of biomass types[J].Fuel,2014,117:152-183. doi:10.1016/j.fuel.2013.09.024 |
11 | MA T, FAN C, HAO L,et al .Fusion characterization of biomass ash[J].Thermochimica Acta,2016,638:1-9. doi:10.1016/j.tca.2016.06.008 |
12 | SHAO Y, WANG J, PRETO F,et al .Ash deposition in biomass combustion or co-firing for power/heat generation[J].Energies,2012,5(12):5171-5189. doi:10.3390/en5125171 |
13 | LI G, LI S, XU X,et al .Dynamic behavior of biomass ash deposition in a 25 kW one-dimensional down-fired combustor[J].Energy & Fuels,2014,28(1):219-227. doi:10.1021/ef401530a |
14 | NIU Y, ZHU Y, TAN H,et al .Investigations on biomass slagging in utility boiler:criterion numbers and slagging growth mechanisms[J].Fuel Processing Technology,2014,128:499-508. doi:10.1016/j.fuproc.2014.07.038 |
15 | NIU Y, TAN H, HUI S E .Ash-related issues during biomass combustion:alkali-induced slagging,silicate melt-induced slagging (ash fusion),agglomeration,corrosion,ash utilization,and related countermeasures[J].Progress in Energy and Combustion Science,2016,52:1-61. doi:10.1016/j.pecs.2015.09.003 |
16 | 李定青,王鹏,姜春光,等 .采用添加剂抑制生物质锅炉受热面沉积试验分析[J].内蒙古电力技术,2023,41(1):87-92. |
LI D Q, WANG P, JIANG C G,et al .Experimental analysis of using additive to inhibit heating surface deposition in biomass-fired boiler[J].Inner Mongolia Electric Power,2023,41(1):87-92. | |
17 | 马隆龙 .生物质能利用技术的研究及发展[J].化学工业,2007,25(8):9-14. doi:10.3969/j.issn.1673-9647.2007.08.002 |
MA L L .Process technology of bio-energy utilization and its development[J].Chemical Industry,2007,25(8):9-14. doi:10.3969/j.issn.1673-9647.2007.08.002 | |
18 | 王朝华 .对我国生物质能源发展现状和趋势的分析[J].农业经济,2011(10):12-14. doi:10.3969/j.issn.1001-6139.2011.10.004 |
WANG Z H .Analysis on the present situation and trend of biomass energy development in China[J].Agricultural Economy,2011(10):12-14. doi:10.3969/j.issn.1001-6139.2011.10.004 | |
19 | EASTERLY J L, BURNHAM M .Overview of biomass and waste fuel resources for power production[J].Biomass and Bioenergy,1996,10(2/3):79-92. doi:10.1016/0961-9534(95)00063-1 |
20 | VASSILEV S V, VASSILEVA C G, VASSILEV V S .Advantages and disadvantages of composition and properties of biomass in comparison with coal:an overview[J].Fuel,2015,158:330-350. doi:10.1016/j.fuel.2015.05.050 |
21 | VASSILEV S V, BAXTER D, ANDERSEN L K,et al .An overview of the composition and application of biomass ash:potential utilisation,technological and ecological advantages and challenges[J].Fuel,2013,105:19-39. doi:10.1016/j.fuel.2012.10.001 |
22 | LANE D J, VAN EYK P J, ASHMAN P J,et al .Release of Cl,S,P,K,and Na during thermal conversion of algal biomass[J].Energy & Fuels,2015,29(4):2542-2554. doi:10.1021/acs.energyfuels.5b00279 |
23 | 方江涛,廖艳芬,黄泽浩,等 .中国南方典型农业生物质结渣特性实验研究[J].新能源进展,2014,2(4):275-281. doi:10.3969/j.issn.2095-560X.2014.04.006 |
FANG J T, LIAO Y F, HUANG Z H,et al .Experimental study on slagging characteristics of typical agricultural biomass in South China[J].Advances in New and Renewable Energy,2014,2(4):275-281. doi:10.3969/j.issn.2095-560X.2014.04.006 | |
24 | DU S, YANG H, QIAN K,et al .Fusion and transformation properties of the inorganic components in biomass ash[J].Fuel,2014,117:1281-1287. doi:10.1016/j.fuel.2013.07.085 |
25 | NÄZELIUS I L, FAGERSTRÖM J, BOMAN C,et al .Slagging in fixed-bed combustion of phosphorus-poor biomass:critical ash-forming processes and compositions[J].Energy & Fuels,2015,29(2):894-908. doi:10.1021/ef502531m |
26 | WU Y, WU S, LI Y,et al .Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw[J].Energy & Fuels,2009,23(10):5144-5150. doi:10.1021/ef900496b |
27 | JIANG J,TIE Y, DENG L,et al .Influence of water-washing pretreatment on ash fusibility of biomass[J].Renewable Energy,2022,200:125-135. doi:10.1016/j.renene.2022.09.121 |
28 | CHEN X D, KONG L-X, BAI J,et al .Study on fusibility of coal ash rich in sodium and sulfur by synthetic ash under different atmospheres[J].Fuel,2017,202:175-183. doi:10.1016/j.fuel.2017.04.001 |
29 | 岑可法 .锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994. |
CEN K F .Prevention principle and calculation of ash accumulation,slagging,wear and corrosion of boilers and heat exchangers[M].Beijing:Science Press,1994. | |
30 | KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K .Transformation and release to the gas phase of Cl,K,and S during combustion of annual biomass[J].Energy & Fuels,2004,18(5):1385-1399. doi:10.1021/ef049944q |
31 | SEVONIUS C, YRJAS P, HUPA M .Defluidization of a quartz bed-Laboratory experiments with potassium salts[J].Fuel,2014,127:161-168. doi:10.1016/j.fuel.2013.10.047 |
32 | 刘卓,李建波,龙潇飞,等 .循环流化床燃烧高钠准东煤的床料颗粒聚团特性[J].中国电机工程学报,2022,42(6):2248-2258. |
LIU Z, LI J B, LONG X F,et al .Bed particle agglomeration in circulating fluidized bed burning high-sodium Zhundong coal[J].Proceedings of the CSEE,2022,42(6):2248-2258. |
[1] | Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit [J]. Power Generation Technology, 2024, 45(3): 401-411. |
[2] | Zhongming GAO, Deao ZHU, Yujia CHEN, Sanju LIU, Qinhui WANG. Experimental Study on the Air Gasification Characteristics of Agricultural and Forestry Waste in a Circulating Fluidized Bed [J]. Power Generation Technology, 2024, 45(3): 535-544. |
[3] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[4] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
[5] | Haiwei JIANG, Mingming GAO, Jie LI, Haoyang YU, Guangxi YUE, Zhong HUANG. Modeling and Dynamic Characteristic Analysis of Combustion Process of Biomass Vibrating Grate Furnace [J]. Power Generation Technology, 2024, 45(2): 250-259. |
[6] | Feilong DENG, Yao YE, Yang LI, Qiaoli WANG, Junxia ZHANG. Numerical Investigation on Pyrolysis Characteristics of Dunaliella Salina in CO2 Atmosphere [J]. Power Generation Technology, 2024, 45(1): 113-119. |
[7] | Yan ZHENG, Xuan YAO, Xunqiang CHEN. Analysis of Syngas Components and Energy in Biomass Gasification Coupled Power Generation System [J]. Power Generation Technology, 2023, 44(6): 859-864. |
[8] | Zhonghao DONG, Xiaofeng LU, Lichao SHI, Zengzeng YANG, Fansheng KONG, Peng WANG, Guoqiang LIN, Peng ZHAO. Influence of Thermal Inertia of Refractory Material in Furnace on the Peak Regulating Rate of Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2023, 44(4): 514-524. |
[9] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
[10] | Zhenshan LI, Hu CHEN, Weicheng LI, Lei LIU, Ningsheng CAI. Research Status and Prospect of Chemical Looping Combustion Pilot Systems [J]. Power Generation Technology, 2022, 43(4): 544-561. |
[11] | Kai XUE, Yihan WANG, Heng CHEN, Gang XU, Jing LEI. Thermodynamic Performance Analysis of a Parabolic Trough Solar-assisted Biomass-fired Cogeneration System [J]. Power Generation Technology, 2021, 42(6): 653-664. |
[12] | Feng HAN, Kunlin CONG, Jie XIANG, Qinghai LI, Yanguo ZHANG, Jing MA. Analysis of Voidage Fluctuations in Gas-Solid Bubbling Fluidized Bed Based on Kolmogorov Entropy [J]. Power Generation Technology, 2021, 42(3): 322-328. |
[13] | Bin NIU, Lifeng LI, Qian SUN, Peihua ZHANG. Research on the Method of Depth Peaking at Full Load of Supercritical Circulating Fluidized Bed Unit [J]. Power Generation Technology, 2021, 42(2): 273-279. |
[14] | Guohua QIU, Pengzhi XU. Analysis on Corrosion Causes of Induced Draft Fan Blade in Circulating Fluidized Bed Boiler With Mixed Burning Solid Waste Fuel [J]. Power Generation Technology, 2020, 41(6): 681-688. |
[15] | Shaohui REN,Xiaowei HU,Can HU,Yuan ZHAO,Yuefeng LI. Waste Heat Utilization of Biomass Direct-Fired Power Plant in Agriculture [J]. Power Generation Technology, 2020, 41(2): 206-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||