1 |
国家统计局 .中华人民共和国2021年国民经济和社会发展统计公报[EB/OL].(2022-02-16)[2024-03-24].. doi:10.3969/j.issn.1002-4557.2003.03.003
|
|
National Bureau of Statistics .Statistical bulletin on national economic and social development of the People’s Republic of China in 2021[EB/OL].(2022-02-16)[2024-03-24].. doi:10.3969/j.issn.1002-4557.2003.03.003
|
2 |
王小洋,李先国 .能源革命背景下我国煤炭运输通道的发展趋势及对策[J].中国流通经济,2019,33(10):67-75.
|
|
WANG X Y, LI X G .The development trend of China’s coal transportation in the context of energy revolution and the countermeasures[J].China Business and Market,2019,33(10):67-75.
|
3 |
冯伟忠,李励 .“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061
|
|
FENG W Z, LI L .Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under “double carbon” targets[J].Power Generation Technology,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061
|
4 |
张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092
|
|
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092
|
5 |
刘志强,李建锋,潘荔,等 .中国煤电机组改造升级效果分析与展望[J].中国电力,2024,57(7):1-11.
|
|
LIU Z Q, LI J F, PAN L,et al .Analysis and prospect of transformation and upgrading effects of coal-fired power units in China[J].Electric Power,2024,57(7):1-11.
|
6 |
袁翠翠,杜政烨,茌方,等 .氧弹热量计性能验收方法实践[J].煤炭加工与综合利用,2022(3):86-90.
|
|
YUAN C C, DU Z Y, CHI F,et al .Practice of guide for performance acceptance of oxygen bomb calorimeter[J].Coal Processing & Comprehensive Utilization,2022(3):86-90.
|
7 |
张利萍 .恒温式热量计测定煤炭发热量的探讨[J].化工设计通讯,2017,43(1):145-147.
|
|
ZHANG L P .Discussion on the determination of calorific value of coal by constant temperature calorimeter[J].Chemical Engineering Design Communications,2017,43(1):145-147.
|
8 |
李莉,于磊,王超 .煤发热量测定方法优化[J].山东电力技术,2015,42(2):72-75.
|
|
LI L, YU L, WANG C .Optimization of calorific value determination of coal[J].Shandong Electric Power,2015,42(2):72-75.
|
9 |
郑忠,宋万利 .基于主成分分析的中煤发热量的检测研究[J].煤炭技术,2014,33(6):218-220.
|
|
ZHENG Z, SONG W L .Detection research of calorific value of middlings based on principal component analysis[J].Coal Technology,2014,33(6):218-220.
|
10 |
SONG W, HOU Z, GU W,et al .Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning[J].Fuel,2021,306:121667. doi:10.1016/j.fuel.2021.121667
|
11 |
YAO S, QIN H, WANG Q,et al .Optimizing analysis of coal property using laser-induced breakdown and near-infrared reflectance spectroscopies[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,239:118492. doi:10.1016/j.saa.2020.118492
|
12 |
谭鹏,李鑫,张小培,等 .基于工业分析的煤质发热量预测[J].煤炭学报,2015,40(11):2641-2646.
|
|
TAN P, LI X, ZHANG X P,et al .Prediction of coal heating value based on proximate analysis[J].Journal of China Coal Society,2015,40(11):2641-2646.
|
13 |
焦发存,刘涛,武成利,等 .淮南矿区煤炭发热量预测模型研究[J].煤矿机械,2022,43(1):27-29.
|
|
JIAO F C, LIU T, WU C L,et al .Study on prediction model of coal calorific value in Huainan mine area[J].Coal Mine Machinery,2022,43(1):27-29.
|
14 |
李大虎,李秋科,王文才,等 .基于MIV特征选择与PSO-BP神经网络的煤炭发热量预测[J].煤炭工程,2020,52(11):154-160.
|
|
LI D H, LI Q K, WANG W C,et al .Prediction of coal calorific value based on MIV characteristic variable selection and PSO-BP neural network[J].Coal Engineering,2020,52(11):154-160.
|
15 |
刘福国,刘景龙,张绪辉,等 .基于高斯过程的煤元素分析全成分含量预测研究[J].中国测试,2021,47(8):38-43.
|
|
LIU F G, LIU J L, ZHANG X H,et al .Prediction of comprehensive elemental compositions of coal based on Gaussian process[J].China Measurement & Test,2021,47(8):38-43.
|
16 |
赵虹,沈利,杨建国,等 .利用煤的工业分析计算元素分析的DE-SVM模型[J].煤炭学报,2010,35(10):1721-1724.
|
|
ZHAO H, SHEN L, YANG J G,et al .The model for calculating ultimate analysis of coal by its proximate analysis based on DE-SVM[J].Journal of China Coal Society,2010,35(10):1721-1724.
|
17 |
谢良才 .基于BP神经网络的数据挖掘技术探究及其在煤热转化数据规律分析中的应用[D].西安:西北大学,2021.
|
|
XIE L C .Research on data mining technology based on BP neural network and its application in data law analysis of coal thermal conversion[D].Xi’an:Northwest University,2021.
|
18 |
王惠新,陈致远,王永红,等 .贵州煤发热量与工业分析指标预测模型[J].洁净煤技术,2020,26(S1):112-115.
|
|
WANG H X, CHEN Z Y, WANG Y H,et al .Prediction model of Guizhou coal calorific value and industrial analysis[J].Clean Coal Technology,2020,26(S1):112-115.
|
19 |
樊泉桂 .锅炉原理[M].北京:中国电力出版社,2004.
|
|
FAN Q G .Boiler principle[M].Beijing:China Electric Power Press,2004.
|
20 |
崔家俊 .基于K-means聚类算法的专变用户负荷模式识别方法研究[D].天津:河北工业大学,2020.
|
|
CUI J J .Research on load pattern recognition method of transformer users based on K-means clustering algorithm[D].Tianjin:Hebei University of Technology,2020.
|
21 |
DUBEY A, CHOUBEY A .A systematic review on k-means clustering techniques[J].International Journal of Scientific Research Engineering and Technology,2017,6(6):1456-1475.
|
22 |
XU J, LANGE K .Power k-means clustering[C]//International Conference on Machine Learning.Taiyuan,China:IEEE,2019:6921-6931.
|
23 |
SHANG R,ARA B, ZADA I,et al .Analysis of simple K-mean and parallel K-mean clustering for software products and organizational performance using education sector dataset[J].Scientific Programming,2021,5:156-173. doi:10.1155/2021/9988318
|
24 |
THORNDIKE R L .Who belongs in the family?[J].Psychometrika,1953,18(4):267-276. doi:10.1007/bf02289263
|
25 |
MEHMOOD R, ZHANG G, BIE R,et al .Clustering by fast search and find of density peaks via HD[J].Neurocomputing,2016,208:210-217. doi:10.1016/j.neucom.2016.01.102
|
26 |
DINH D T, FUJINAMI T, HUYNH V N .Estimating the optimal number of clusters in categorical data clustering by silhouette coefficient[C]//International Symposium on Knowledge and Systems Science.Singapore:Springer,2019:1-17. doi:10.1007/978-981-15-1209-4_1
|
27 |
CALINSKI T, HARABASZ J .A dendrite method for cluster analysis[J].Communications in Statistics,1974,3(1):1-27. doi:10.1080/03610927408827101
|
28 |
HASSAN M A S, ASSAD U, FAROOQ U,et al .Dynamic price-based demand response through linear regression for microgrids with renewable energy resources[J].Energies,2022,15(4):1385-1391. doi:10.3390/en15041385
|
29 |
束洪春,代月,安娜,等 .基于线性回归的柔性直流电网纵联保护方法[J].电工技术学报,2022,37(13):3213-3226.
|
|
SHU H C, DAI Y, AN N,et al .Pilot protection method of flexible DC grid based on linear regression[J].Transactions of China Electrotechnical Society,2022,37(13):3213-3226.
|
30 |
SARKODIE S A, OZTURK I .Investigating the environmental Kuznets curve hypothesis in Kenya:a multivariate analysis[J].Renewable and Sustainable Energy Reviews,2020,117:109481. doi:10.1016/j.rser.2019.109481
|
31 |
贾小勇,徐传胜,白欣 .最小二乘法的创立及其思想方法[J].西北大学学报(自然科学版),2006,36(3):507-511.
|
|
JIA X Y, XU C S, BAI X .The invention and way of the thinking on least squares[J].Journal of Northwestern University (Natural Science Edition),2006,36(3):507-511.
|
32 |
RANSTAM J, COOK J A .LASSO regression[J].Journal of British Surgery,2018,105(10):1348-1348. doi:10.1002/bjs.10895
|