Power Generation Technology ›› 2024, Vol. 45 ›› Issue (1): 62-68.DOI: 10.12096/j.2096-4528.pgt.21126
• Carbon Neutrality • Previous Articles Next Articles
Hanxiao LIU1,2,3,4, Shuiyuan LUO1, Xiaowei LIU4
Received:
2022-03-10
Published:
2024-02-29
Online:
2024-02-29
Supported by:
CLC Number:
Hanxiao LIU, Shuiyuan LUO, Xiaowei LIU. Study on Emission Characteristics, Test and Capture Technology of CO2 in Industrial Flue Gas[J]. Power Generation Technology, 2024, 45(1): 62-68.
测试方法 | 测试原理 | 对应的测试标准 |
---|---|---|
非分散红外吸收法 | CO2气体选择性吸收4.26 μm波长的红外辐射,且在一定的范围内,吸收量与CO2气体浓度遵循Lambert-beer定律,根据出入射光强来计算CO2气体浓度 | ISO 12039—2001、 BS ISO 10396—2007、 GB/T 18204.24—2000、 HJ 870-2017、 ZHJZ/JF 110 |
气相色谱法 | CO2经甲烷化转化器转化为甲烷,用氢火焰离子化检测器(FID)进行测定 | EPA Method 3C、 GB/T 18204.24—2000、 GB/T 8984—2008 |
光谱法 | CO2与辐射能作用时,分子发生能级跃迁而产生的发射、吸收或散射的波长或强度进行分析的方法。根据测试原理不同,可分为离轴积分腔输出光谱法、光腔衰荡光谱法(CRDS)和傅里叶变换红外光谱法(FTIR) | ISO 19702—2006、JIS B 7986-—2006、 EPA Method 320、 GB/T 34286—2017、 GB/T 34415—2017 |
化学吸收法 | 化学吸收法是利用不同的溶液来相继吸收样品中不同气体组分,然后根据吸收前后试样体积的变化来计算其浓度值 | ISO 10396—2007、EPA Method 3A、 GB/T 16157—1996 |
Tab. 1 Comparison of CO2 test methods
测试方法 | 测试原理 | 对应的测试标准 |
---|---|---|
非分散红外吸收法 | CO2气体选择性吸收4.26 μm波长的红外辐射,且在一定的范围内,吸收量与CO2气体浓度遵循Lambert-beer定律,根据出入射光强来计算CO2气体浓度 | ISO 12039—2001、 BS ISO 10396—2007、 GB/T 18204.24—2000、 HJ 870-2017、 ZHJZ/JF 110 |
气相色谱法 | CO2经甲烷化转化器转化为甲烷,用氢火焰离子化检测器(FID)进行测定 | EPA Method 3C、 GB/T 18204.24—2000、 GB/T 8984—2008 |
光谱法 | CO2与辐射能作用时,分子发生能级跃迁而产生的发射、吸收或散射的波长或强度进行分析的方法。根据测试原理不同,可分为离轴积分腔输出光谱法、光腔衰荡光谱法(CRDS)和傅里叶变换红外光谱法(FTIR) | ISO 19702—2006、JIS B 7986-—2006、 EPA Method 320、 GB/T 34286—2017、 GB/T 34415—2017 |
化学吸收法 | 化学吸收法是利用不同的溶液来相继吸收样品中不同气体组分,然后根据吸收前后试样体积的变化来计算其浓度值 | ISO 10396—2007、EPA Method 3A、 GB/T 16157—1996 |
CO2捕集方法 | 优缺点 | ||
---|---|---|---|
吸收法 | 化学吸收法 | 热钾碱法 | 优点:CO2产品纯度高(99%)、反应速度快、吸收能力强、液体循环量小 缺点:低温条件下K2CO3易结晶,解吸温度较高,吸收压力较高,氧化降解速率较快;能耗较高 |
有机胺、氨基酸盐法 | 优点:CO2产品纯度高(99%),中高压低温条件下具有物理吸收特性,吸收能力强,反应解吸温度低 缺点:胺液易氧化、低压条件下吸收能力小,溶液循环量大;能耗较高 | ||
物理吸收法 | 优点:CO2产品纯度高(99%),适用于中高压、低温、低浓度工况,反应解吸温度低 缺点:低压条件下吸收能力低 | ||
物理化学吸收法 | |||
吸附法 | 优点:操作弹性大,CO2成品质量稳定,基本不会随原料气组分的变化而变化,适合于高浓度CO2的处理 缺点:产品纯度低(95%),回收率低,预处理要求高 | ||
膜分离法 | 优点:模块化设计,安装维护方便,适合于高浓度CO2的处理 缺点:产品纯度低(95%),预处理要求高,膜组件易堵塞、寿命短 | ||
深冷法 | 优点:流程简单、投资较低,适合于高浓度CO2的处理 缺点:产品纯度低(95%),CO2低浓度下能耗巨大 |
Tab. 2 Comparison of different CO2 capture methods
CO2捕集方法 | 优缺点 | ||
---|---|---|---|
吸收法 | 化学吸收法 | 热钾碱法 | 优点:CO2产品纯度高(99%)、反应速度快、吸收能力强、液体循环量小 缺点:低温条件下K2CO3易结晶,解吸温度较高,吸收压力较高,氧化降解速率较快;能耗较高 |
有机胺、氨基酸盐法 | 优点:CO2产品纯度高(99%),中高压低温条件下具有物理吸收特性,吸收能力强,反应解吸温度低 缺点:胺液易氧化、低压条件下吸收能力小,溶液循环量大;能耗较高 | ||
物理吸收法 | 优点:CO2产品纯度高(99%),适用于中高压、低温、低浓度工况,反应解吸温度低 缺点:低压条件下吸收能力低 | ||
物理化学吸收法 | |||
吸附法 | 优点:操作弹性大,CO2成品质量稳定,基本不会随原料气组分的变化而变化,适合于高浓度CO2的处理 缺点:产品纯度低(95%),回收率低,预处理要求高 | ||
膜分离法 | 优点:模块化设计,安装维护方便,适合于高浓度CO2的处理 缺点:产品纯度低(95%),预处理要求高,膜组件易堵塞、寿命短 | ||
深冷法 | 优点:流程简单、投资较低,适合于高浓度CO2的处理 缺点:产品纯度低(95%),CO2低浓度下能耗巨大 |
1 | ROGELJ J, DEN ELZEN M, HÖHNE N,et al .Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J].Nature,2016,534:631-639. doi:10.1038/nature18307 |
2 | 胡道成,王睿,赵瑞,等 .二氧化碳捕集技术及适用场景分析[J].发电技术,2023,44(4):502-513. doi:10.12096/j.2096-4528.pgt.22056 |
HU D C, WANG R, ZHAO R,et al .Research on carbon dioxide capture technology and suitable scenarios[J].Power Generation Technology,2023,44(4):502-513. doi:10.12096/j.2096-4528.pgt.22056 | |
3 | 周原冰,杨方,余潇潇,等 .中国能源电力碳中和实现路径及实施关键问题[J].中国电力,2022,55(5):1-11. |
ZHOU Y B, YANG F, YU X X,et al .Realization pathways and key problems of carbon neutrality in China’s energy and power system[J].Electric Power,2022,55(5):1-11. | |
4 | 刘鹏,崔雪 .双碳背景下考虑市场份额偏好的发电侧市场均衡分析[J].电力科学与技术学报,2023,38(2):9-17. |
LIU P, CUI X .Equilibrium analysis of power generation market considering market share preference un-der carbon-neutral goal[J].Journal of Electric Power Science and Technology,2023,38(2):9-17. | |
5 | 张杰,陈洁,孙晗喆,等 .基于碳捕集与液态CO2储能的综合能源系统优化调度[J].智慧电力,2023,51(3):1-8. doi:10.3969/j.issn.1673-7598.2023.03.002 |
ZHANG J, CHEN J, SUN H Z,et al .Optimal scheduling of integrated energy systems based on carbon capture and liquid CO2 energy storage[J].Smart Power,2023,51(3):1-8. doi:10.3969/j.issn.1673-7598.2023.03.002 | |
6 | 张金良,贾凡 .中国火电行业多模型碳达峰情景预测[J].电力建设,2022,43(5):18-28. doi:10.12204/j.issn.1000-7229.2022.05.003 |
ZHANG J L, JIA F .Multi-model carbon peak scenario prediction for thermal power industry in China [J].Electric Power Construction,2022,43(5):18-28. doi:10.12204/j.issn.1000-7229.2022.05.003 | |
7 | 英国石油公司 .世界能源统计年鉴(第70版)[R].伦敦:英国石油公司,2021. doi:10.18356/9789210055253 |
British Petrol Company .World energy statistics yearbook (70th Edition)[R].London:British Petrol Company,2021. doi:10.18356/9789210055253 | |
8 | Sachs Goldman .China net zero:the clean tech revolution[R].Goldman Sachs,2021. |
9 | 国际能源署 .全球能源回顾:2020年二氧化碳排放[R].巴黎:国际能源署,2021. doi:10.1787/90c8c125-en |
International Energy Agency .Global energy review: carbon dioxide emissions in 2020[R].Paris:International Energy Agency,2021. doi:10.1787/90c8c125-en | |
10 | 生态环境部环境规划院 .“十四五”绿色产业发展形势分析[R].北京:生态环境部环境规划院,2021. |
Institute of Environmental Planning,Ministry of Ecological Environment .Analysis on the development situation of green industry in the 14th Five-Year Plan[R].Beijing:Institute of Environmental Planning,Ministry of Ecological Environment,2021. | |
11 | 申洪,周勤勇,刘耀,等 .碳中和背景下全球能源互联网构建的关键技术及展望[J].发电技术,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 |
SHEN H, ZHOU Q Y, LIU Y,et al .Key technologies and prospects for the construction of global energy Internet under the background of carbon neutral[J].Power Generation Technology,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 | |
12 | 徐敬尧,张明旭,李寒旭,等 .氨法捕集燃煤电厂烟道气中CO2的试验研究[J].中国矿业大学学报,2012,41(2):305-309. |
XU J Y, ZHANG M X, LI H X,et al .Experimental study of capturing CO2 in flue gas from coal-fired power plants by ammonia scrubbing[J].Journal of China University of Mining & Technology,2012,41(2):305-309. | |
13 | 张宏亮 .燃煤电厂二氧化碳氨吸收技术的系统模拟与优化[D].北京:清华大学,2008. |
ZHANG H L .System simulation and optimization of ammonia absorption technology for carbon dioxide in coal-fired power plants[D].Beijing:Tsinghua University,2008. | |
14 | 王兆才,刘臣,李继淦,等 .烧结烟气CO x 的生成机理及减排措施[J].烧结球团,2021,46(1):14-22. |
WANG Z C, LIU C, LI J G,et al .Generation mechanism and emission reduction measures of CO x in sintering flue gas[J].Sintering and Pelletizing,2021,46(1):14-22. | |
15 | 廖继勇,郑浩翔,甘敏,等 .烧结烟气CO的产生及治理途径—生成机理及排放规律[J].烧结球团,2021,46(2):1-7. |
LIAO J Y, ZHENG H X, GAN M,et al .Generation and governance way of CO in sintering flue gas:formation mechanism and emission law[J].Sintering and Pelletizing,2021,46(2):1-7. | |
16 | 吴涛,桑圣欢,祁亚军,等 .水泥厂碳捕集工艺技术[J].水泥技术,2020,8(4):90-95. |
WU T, SANG S H, QI Y J,et al .Carbon capture technology in cement plant[J].Cement Technology,2020,8(4):90-95. | |
17 | 谢辉,孙立勋,李治 .水泥企业碳捕集方案技术及经济性分析[J].建材发展导向,2020,8(4):59-61. |
XIE H, SUN L X, LI Z .Technical and economic analysis of carbon capture scheme in cement enterprises[J].Development Guide to Building Materials,2020,8(4):59-61. | |
18 | 袁博,袁宇鹏,张祖伟,等 .基于差分吸收检测技术的非分散红外CO2呼吸气体传感器[J].重庆邮电大学学报(自然科学版),2021,33(1):118-125. doi:10.3979/j.issn.1673-825X.201903040073 |
YUAN B, YUAN Y P, ZHANG Z W,et al .Non-dispersive infrared CO2 breathing gas sensor based on differential absorption detection technology[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2021,33(1):118-125. doi:10.3979/j.issn.1673-825X.201903040073 | |
19 | 涂志华,赵阳,郑力文,等 .基于非分散红外(NDIR)技术的土壤剖面二氧化碳浓度的测定[J].光谱学与光谱分析,2015,35(4):997-1000. doi:10.3964/j.issn.1000-0593(2015)04-0997-04 |
TU Z H, ZHAO Y, ZHENG L W,et al .Detection of carbon dioxide concentration in soil profile based on nondispersive infrared spectroscopy technique[J].Spectroscopy and Spectral Analysis,2015,35(4):997-1000. doi:10.3964/j.issn.1000-0593(2015)04-0997-04 | |
20 | 梁汉昌 .气相色谱法在气体分析中的应用[M].北京:化学工业出版社,2007. |
LIANG H C .Application of gas chromatography in gas analysis[M].Beijing:Chemical Industry Press,2007. | |
21 | 张丽萍,王久荣,陈闻,等 .气相色谱法测定大气中的CO、CO2以及低级烃类物质[J].分析测试学报,2017,36(9):1119-1123. doi:10.3969/j.issn.1004-4957.2017.09.011 |
ZHANG L P, WANG J R, CHEN W,et al .Determination of CO,CO2 and light hydrocarbons in air by gas chromatography[J].Journal of Instrumental Analysis,2017,36(9):1119-1123. doi:10.3969/j.issn.1004-4957.2017.09.011 | |
22 | 胡德龙,宋海龙,陈家颖 .气相色谱法快速测定食品用二氧化碳中的杂质[J].化学分析计量,2020,29(4):91-96. doi:10.3969/j.issn.1008-6145.2020.04.021 |
HU D L, SONG H L, CHEN J Y .Rapid determination of impurities in carbon dioxide for food by gas chromatography[J].Chemical Analysis and Meterage,2020,29(4):91-96. doi:10.3969/j.issn.1008-6145.2020.04.021 | |
23 | 刘梓迪,郑凯元,张海鹏,等 .离轴积分腔增强红外激光二氧化碳传感系统[J].光子学报,2020,49(11):1149014. doi:10.3788/gzxb20204911.181 |
LIU Z D, ZHENG K Y, ZHANG H P,et al .Off-axis integrated cavity-enhanced infrared laser carbon dioxide sensor system[J].Acta Photonica Sinica,2020,49(11):1149014. doi:10.3788/gzxb20204911.181 | |
24 | 董洋 .水中溶解气体CO2、CH4和13CH4原位光谱分析仪的研制[D].合肥:中国科学技术大学,2020. |
DONG Y .Development of in-situ spectral analyzer for dissolved gases in water CO2,CH4 and 13CH4 [D].Hefei:University of Science and Technology of China,2020. | |
25 | 刘文清,王兴平,马国盛,等 .高灵敏腔衰荡光谱技术及其应用研究[J].光学学报,2021,41(1):1-17. doi:10.3788/aos202141.0130003 |
LIU W Q, WANG X P, MA G S,et al .Research of high sensitivity cavity ring-down spectroscopy technology and its application[J].Acta Optica Sinica,2021,41(1):1-17. doi:10.3788/aos202141.0130003 | |
26 | CROSSON E R .A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J].Applied Physics B,2008,92(3):403-408. doi:10.1007/s00340-008-3135-y |
27 | SCHÜTZE C, LAU S, REICHE N,et al .Ground-based remote sensing with open-path fourier-transform infrared (OP-FTIR) spectroscopy for large-scale monitoring of greenhouse gases[J].Energy Procedia,2013,37:4276-4282. doi:10.1016/j.egypro.2013.06.330 |
28 | 夏毅 .快速测定液相中CO2浓度的方法[J].化工管理,2020,36(12):23-25. doi:10.3969/j.issn.1008-4800.2020.35.012 |
XIA Y .Determining carbon dioxide in liquid quickly[J].Chemical Enterprise Management,2020,36(12):23-25. doi:10.3969/j.issn.1008-4800.2020.35.012 | |
29 | LU S J, LIU H, ZHAO D Y,et al .The research of net carbon reduction model for CCS-EOR projects cases study[J].International Journal of Simulation and Process Modelling,2017,12(5):401-407. doi:10.1504/ijspm.2017.10008519 |
30 | 王新频 .世界水泥工业CCUS最新研究进展[J].水泥,2021,41(3):1-5. |
WANG X P .The latest research progress of CCUS in cement industry in the world[J].Cement,2021,41(3):1-5. |
[1] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[2] | Hanxiao LIU, Jianguo LI, Yuping YAO, Ying CUI, Gaofei GUO, Haitao HE, Meiling LIU, Minchao SHEN. Study on SO3 Removal Performance of Low-low Temperature Electrostatic Precipitator System [J]. Power Generation Technology, 2022, 43(1): 147-154. |
[3] | Zhaomei CHEN,Hanxiao LIU,Ying CUI,Gaofei GUO,Yincan MENG,Meiling LIU,Haitao HE,Xiaowei FANG. Study on Generation, Hazard, Testing and Emission Characteristics of SO3 in Flue Gas of Coal-fired Power Plants [J]. Power Generation Technology, 2019, 40(6): 564-569. |
[4] | Zhaomei CHEN,Hanxiao LIU,Ying CUI,Zhibo LIU,Gaofei GUO,Yincan MENG,Meiling LIU. Study on Generation, Treatment, Testing and Emission Characteristics of Hg in Flue Gas of Coal-fired Power Plants [J]. Power Generation Technology, 2019, 40(4): 355-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||