Power Generation Technology ›› 2023, Vol. 44 ›› Issue (4): 492-501.DOI: 10.12096/j.2096-4528.pgt.22079
• Carbon Neutrality • Previous Articles Next Articles
Xin TANG1, Yiran QIAN1, Huawei FANG2, Yang LI2, Siguang LI2, Jingwei YI2, Weixiong CHEN1, Junjie YAN1
Received:
2022-04-20
Published:
2023-08-31
Online:
2023-08-29
Contact:
Weixiong CHEN
Supported by:
CLC Number:
Xin TANG, Yiran QIAN, Huawei FANG, Yang LI, Siguang LI, Jingwei YI, Weixiong CHEN, Junjie YAN. A Review of Control Strategies for Supercritical Carbon Dioxide Brayton Cycle[J]. Power Generation Technology, 2023, 44(4): 492-501.
控制方法 | 适用范围 |
---|---|
容积控制 | 50%~90%和10%~25%负荷 |
透平节流控制 | 0~50%负荷 |
透平旁路控制 | 90%~100%负荷,以及在其他负荷时,协助容积和透平节流控制 |
冷却器旁路控制 | 所有变负荷时,保持最低温度 |
冷却水流量控制 | 所有负荷时,保持冷却器旁路的可操作性 |
压缩机喘振控制 | 避免压缩机进入喘振区 |
Tab. 1 S-CO2 Brayton cycle control strategy of ANL
控制方法 | 适用范围 |
---|---|
容积控制 | 50%~90%和10%~25%负荷 |
透平节流控制 | 0~50%负荷 |
透平旁路控制 | 90%~100%负荷,以及在其他负荷时,协助容积和透平节流控制 |
冷却器旁路控制 | 所有变负荷时,保持最低温度 |
冷却水流量控制 | 所有负荷时,保持冷却器旁路的可操作性 |
压缩机喘振控制 | 避免压缩机进入喘振区 |
变负荷方法 | 原理 | 特征 |
---|---|---|
压缩机转速控制法 | 改变循环流量,进而改变循环功率 | 仅适用于压缩机和透平分轴布置;保证循环效率的快速变负荷方法 |
容积控制法 | 控制循环工质容量,控制循环压力和流量 | 循环效率高,但变负荷速度慢;变负荷能力受到储罐容积限制;循环压力有低于临界点的风险 |
温度控制法 | 包括压缩机入口和透平出口温度控制。前者通过改变 压缩机性能改变流量;后者直接改变透平输出功 | 会降低循环效率;需要调节反应堆功率来控制温度 |
透平进口节流阀 控制法 | 降低透平进口压力,降低透平功率 | 循环效率低,但变负荷速度快;无法达到20%以下负荷; 可能会导致压缩机壅塞 |
透平旁路控制法 | 减少流过透平流量,降低透平功率 | 在任意负荷条件下快速调节负荷;除阀门外不需要投入额外设备 |
Tab. 2 Comparison of variable load control methods
变负荷方法 | 原理 | 特征 |
---|---|---|
压缩机转速控制法 | 改变循环流量,进而改变循环功率 | 仅适用于压缩机和透平分轴布置;保证循环效率的快速变负荷方法 |
容积控制法 | 控制循环工质容量,控制循环压力和流量 | 循环效率高,但变负荷速度慢;变负荷能力受到储罐容积限制;循环压力有低于临界点的风险 |
温度控制法 | 包括压缩机入口和透平出口温度控制。前者通过改变 压缩机性能改变流量;后者直接改变透平输出功 | 会降低循环效率;需要调节反应堆功率来控制温度 |
透平进口节流阀 控制法 | 降低透平进口压力,降低透平功率 | 循环效率低,但变负荷速度快;无法达到20%以下负荷; 可能会导致压缩机壅塞 |
透平旁路控制法 | 减少流过透平流量,降低透平功率 | 在任意负荷条件下快速调节负荷;除阀门外不需要投入额外设备 |
1 | 马岳庚 .光热太阳能发电系统中的超临界二氧化碳循环性能研究与优化设计[D].西安:西安交通大学,2021. doi:10.1002/er.5857 |
MA Y G .Performance investigation and optimal design of supercritical carbon dioxide cycles for concentrated solar power application[D].Xi’an:Xi’an Jiaotong University,2021. doi:10.1002/er.5857 | |
2 | 郑开云 .低温场景超临界CO2循环燃煤发电系统研究[J].发电技术,2022,43(1):126-130. doi:10.12096/j.2096-4528.pgt.20018 |
ZHENG K Y .Study on supercritical CO2 cycle coal-fired power generation system for low temperature scenario[J].Power Generation Technology,2022,43(1):126-130. doi:10.12096/j.2096-4528.pgt.20018 | |
3 | 郑开云 .超临界CO2循环冷端温度优化研究[J].发电技术,2021,42(2):261-266. doi:10.12096/j.2096-4528.pgt.19149 |
ZHENG K Y .Study on cold end temperature optimization of supercritical CO2 cycle[J].Power Generation Technology,2021,42(2):261-266. doi:10.12096/j.2096-4528.pgt.19149 | |
4 | 冯岩,王绩德 .超临界二氧化碳布雷顿循环研究综述[J].能源与节能,2019(2):97-100. doi:10.3969/j.issn.2095-0802.2019.02.044 |
FENG Y, WANG J D .Review of supercritical carbon dioxide Brayton cycle research[J].Energy and Energy Conservation,2019(2):97-100. doi:10.3969/j.issn.2095-0802.2019.02.044 | |
5 | 王绩德,冯岩 .超临界二氧化碳动力循环关键部件研究综述[J].能源与节能,2019(1):96-97. doi:10.3969/j.issn.2095-0802.2019.01.043 |
WANG J D, FENG Y .Review on key components of supercritical carbon dioxide power cycle[J].Energy and Energy Conservation,2019(1):96-97. doi:10.3969/j.issn.2095-0802.2019.01.043 | |
6 | 朱郁波,黄伟光,崔小康,等 .闭式布雷顿循环变工况试验研究与仿真分析[J].动力工程学报,2019,39(12):1027-1034. |
ZHU Y B, HUANG W G, CUI X K,et al .Experimental study and simulation analysis of a closed Brayton cycle under variable working conditions[J].Journal of Chinese Society of Power Engineering,2019,39(12):1027-1034. | |
7 | 孙嘉 .超临界二氧化碳循环发电系统动态特性及控制应用分析[D].哈尔滨:哈尔滨工业大学,2018. |
SUN J .Characteristic simulation and control of supercritical carbon dioxide cycle power generation system[D].Harbin:Harbin Institute of Technology,2018. | |
8 | 晋文超,葛宋 .国外超临界二氧化碳循环发电技术发展及应用前景[J].舰船科学技术,2018,40(6):6-9. doi:10.3404/j.issn.1672-7649.2018.06.002 |
JIN W C, GE S .The international development of supercritical carbon dioxide brayton cycle power generation technology and its application[J].Ship Science and Technology,2018,40(6):6-9. doi:10.3404/j.issn.1672-7649.2018.06.002 | |
9 | 董力 .超临界二氧化碳发电技术概述[J].中国环保产业,2017(5):48-52. doi:10.3969/j.issn.1006-5377.2017.05.013 |
DONG L .Summarization on power technology of supercritical carbon dioxide[J].China Environmental Protection Industry,2017(5):48-52. doi:10.3969/j.issn.1006-5377.2017.05.013 | |
10 | WRIGHT I G, PINT B A, SHINGLEDECKER J P,et al .Materials considerations for supercritical CO2 turbine cycles[C]//ASME turbo expo.Texas:ASME,2013:356-362. doi:10.1115/gt2013-94941 |
11 | WEILAND N, THIMSEN D .A practical look at assumptions and constraints for steady state modeling of S-CO2 Brayton power cycles[R].Golden:The National Energy Technology Laboratory,2016. |
12 | 徐进良,刘超,孙恩慧,等 .超临界二氧化碳动力循环研究进展及展望[J].热力发电,2020,49(10):1-10. doi:10.19666/j.rlfd.202004089 |
XU J L, LIU C, SUN E H,et al .Review and perspective of supercritical carbon dioxide power cycles[J].Thermal Power Generation,2020,49(10):1-10. doi:10.19666/j.rlfd.202004089 | |
13 | DOSTAL V, HEJZLAR P, DRISCOLL M J .The supercritical carbon dioxide power cycle:comparison to other advanced power cycles[J].Nuclear Technology,2006,154(3):283-301. doi:10.13182/nt06-a3734 |
14 | 吴攀,高春天,单建强 .超临界二氧化碳布雷顿循环在核能领域的应用[J].现代应用物理,2019,10(3):79-88. doi:10.12061/j.issn.2095-6223.2019.031202 |
WU P, GAO C T, SHAN J Q .Application of supercritical carbon dioxide Brayton cycle in nuclear engineering[J].Modern Applied Physics,2019,10(3):79-88. doi:10.12061/j.issn.2095-6223.2019.031202 | |
15 | TURCHI C S, MA Z W, NEISES T W,et al .Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J].Journal of Solar Energy Engineering,2013,135(4):1-7. doi:10.1115/1.4024030 |
16 | DOSTAL V, HEJZLAR P, DRISCOLL M J .High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors[J].Nuclear Technology,2006,154(3):265-282. doi:10.13182/nt154-265 |
17 | MOISSEYTSEV A, SIENICKI J J .Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor[J].Nuclear Engineering and Design,2009,239(7):1362-1371. doi:10.1016/j.nucengdes.2009.03.017 |
18 | CARSTENS N A .Control strategies for supercritical carbon dioxide power conversion systems[M].Washington:ProQuest Dissertations Publishing,2007. |
19 | MOISSEYTSEV A, SIENICKI J J .Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor[R].Chicago:Argonne National Laboratory,2006. doi:10.2172/910536 |
20 | MOISSEYTSEV A, SIENICKI J J .Investigation of plant control strategies for the supercritical CO2 Brayton cycle for a sodium-cooled fast reactor using the plant dynamics code[R].Chicago:Argonne National Laboratory,2010. doi:10.2172/1011292 |
21 | MOISSEYTSEV A, SIENICKI J J .Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the sandia small-scale supercritical carbon dioxide Brayton cycle test loop[R].Chicago:Argonne National Laboratory,2011. doi:10.2172/1040687 |
22 | MOISSEYTSEV A, SIENICKI J J .Dynamic control analysis of the AFR-100 SMR SFR with a supercritical CO2 cycle and dry air cooling:part i:plant control optimization[C]//Proceedings of the 2018 26th International Conference on Nuclear Engineering.London,England:IEEE,2018:198-207. doi:10.1115/icone26-82292 |
23 | WU P, MA Y, GAO C,et al .A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J].Nuclear Engineering and Design,2020,368:110767. doi:10.1016/j.nucengdes.2020.110767 |
24 | LI H, FAN G, CAO L,et al .A comprehensive investigation on the design and off-design performance of supercritical carbon dioxide power system based on the small-scale lead-cooled fast reactor[J].Journal of Cleaner Production,2020,256:120720. doi:10.1016/j.jclepro.2020.120720 |
25 | OH B S, AHN Y H, YU H,et al .Safety evaluation of supercritical CO2 cooled micro modular reactor[J].Annals of Nuclear Energy,2017,110:1202-1216. doi:10.1016/j.anucene.2017.08.038 |
26 | OH B S, AHN Y H, KIM S G,et al .Transient analyses of S-CO2 cooled KAIST micro modular reactor with gamma+code[C]//The 5th International Symposium-Supercritical CO2 Power Cycles.San Antonio,Texas:IEEE,2016:260-271. doi:10.1016/j.anucene.2017.08.038 |
27 | GAO C, WU P, LIU W,et al .Development of a bypass control strategy for supercritical CO2 Brayton cycle cooled reactor system under load-following operation[J].Annals of Nuclear Energy,2021,151:107917. doi:10.1016/j.anucene.2020.107917 |
28 | SINGH R, MILLER S A, ROWLANDS A S,et al .Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant[J].Energy,2013,50:194-204. doi:10.1016/j.energy.2012.11.029 |
29 | SINGH R, KEARNEY M P, MANZIE C .Extremum-seeking control of a supercritical carbon-dioxide closed Brayton cycle in a direct-heated solar thermal power plant[J].Energy,2013,60:380-387. doi:10.1016/j.energy.2013.08.001 |
30 | LUU M T, MILANI D, MCNAUGHTON R,et al .Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle[J].Applied Energy,2017,199:247-263. doi:10.1016/j.apenergy.2017.04.073 |
31 | LUU M T, MILANI D, MCNAUGHTON R,et al .Advanced control strategies for dynamic operation of a solar-assisted recompression supercritical CO2 Brayton power cycle[J].Applied Thermal Engineering,2018,136:682-700. doi:10.1016/j.applthermaleng.2018.03.021 |
32 | ZHANG J, YANG Z, LE MOULLEC Y .Dynamic modeling and transient analysis of a molten salt heated recompression supercritical CO2 Brayton cycle[C]//The 6th International Supercritical CO2 Power Cycles Symposium.Pittsburgh,Pennsylvania:IEEE,2018:129-138. |
33 | ZHOU P, ZHANG J, LE MOULLEC Y,et al .Dynamic modeling and transient analysis of a recompression supercritical CO2 Brayton cycle[J].AIP conference proceedings,2020,2303:198-207. doi:10.1063/5.0029260 |
[1] | Jianlin LI, Ziyang DING, Haitao LIU, Hang YANG. Research on Grid-Forming Energy Storage Converters and Control Strategies [J]. Power Generation Technology, 2022, 43(5): 679-686. |
[2] | Zhou YANG, Renxin YANG, Gang SHI, Jianwen ZHANG. A Novel Control Strategy for AC Fault Ride Through in Multi-terminal DC System [J]. Power Generation Technology, 2022, 43(2): 268-277. |
[3] | Zishang LI, Renhan ZHU, Zhen DU. Analysis on the Optimization Technology of Precise Ammonia Injection in SCR Denitration System [J]. Power Generation Technology, 2021, 42(5): 630-636. |
[4] | Lei ZHANG, Jiying LI, Qinwei LI, Mince ZHANG, Yunfeng GUO, Lidong ZHANG. Status and Prospect of Yaw System Control Strategy for Wind Turbines [J]. Power Generation Technology, 2021, 42(3): 306-312. |
[5] | Yan WANG, Xiuyuan YANG, Jianfeng XU, Siqi BU, Zhiqiang XU. Control Strategy of Civil Controllable Load Participating in Demand Response [J]. Power Generation Technology, 2020, 41(6): 638-649. |
[6] | Kaiyun ZHENG. Application of Supercritical Carbon Dioxide Cycle Power Generation Technology [J]. Power Generation Technology, 2020, 41(4): 399-406. |
[7] | Chenqi TANG,Lingen CHEN,Wenhua WANG,Huijun FENG,Shaojun XIA. Performance Optimization of Endoreversible Simple MCBC Coupled to Variable-temperature Reservoirs Based on NSGA-Ⅱ Algorithm [J]. Power Generation Technology, 2020, 41(3): 301-316. |
[8] | Xiaozhe SUN. Operation Control Strategy of Oil Drilling Rig PV/Storage/Diesel Power Supply System [J]. Power Generation Technology, 2019, 40(5): 469-474. |
[9] | Lixia FAN,Ruiqiang CAI,Huanchang ZHANG,Yuan WEI,Tian TIAN,Bin HU. Impedance and Sub-synchronous Oscillation Characteristics of Doubly-fed Induction Generators with Control Strategy of Voltage Virtual Synchronous Generator [J]. Power Generation Technology, 2019, 40(5): 434-439. |
[10] | Jiuhe WANG. Research on Control Strategy for Unified Power Quality Conditioner [J]. Power Generation Technology, 2018, 39(4): 313-321. |
[11] | Yani ZHUANG,Xiuyuan YANG,Xincheng JIN. Study on Operation Technology of Wind-PV-Energy Storage Combined Power Generation [J]. Power Generation Technology, 2018, 39(4): 296-303. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||