Power Generation Technology ›› 2022, Vol. 43 ›› Issue (6): 951-958.DOI: 10.12096/j.2096-4528.pgt.22162
• Power Generation and Environmental Protection • Previous Articles Next Articles
Hang ZHANG1, Chuanjie ZHOU1, Lin ZHANG1, Jietao CHEN1, Chunmei XU2, Daogang PENG2
Received:
2022-10-24
Published:
2022-12-31
Online:
2023-01-03
Supported by:
CLC Number:
Hang ZHANG, Chuanjie ZHOU, Lin ZHANG, Jietao CHEN, Chunmei XU, Daogang PENG. Fault Diagnosis of Power Plant Induced Draft Fan Based on PNN-WNN-DS Information Fusion[J]. Power Generation Technology, 2022, 43(6): 951-958.
序号 | 故障模式 | 特征1 | 特征2 | 特征3 | 特征4 | 特征5 | 特征6 | 特征7 | 特征8 | 目标输出 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 模式1 | 3.28 | 0.17 | 1.81 | 0 | -0.19 | 2.35 | 1.86 | 1.02 | 0 0 1 |
2 | 模式1 | 3.28 | 0.19 | 1.81 | 0 | 0.32 | 2.17 | 1.87 | 1.03 | 0 0 1 |
3 | 模式1 | 3.27 | 0.18 | 1.81 | 0 | 0.26 | 2.38 | 1.87 | 1.03 | 0 0 1 |
… | … | … | … | … | … | … | … | … | … | … |
22 | 模式1 | 3.38 | 0.13 | 1.84 | 0 | -0.43 | 4.27 | 1.87 | 1.02 | 0 0 1 |
23 | 模式2 | 1.67 | 0.07 | 1.29 | 0 | -0.4 | 2.01 | 1.31 | 1.02 | 0 1 0 |
24 | 模式2 | 1.69 | 0.1 | 1.3 | 0 | -0.21 | 2.2 | 1.34 | 1.03 | 0 1 0 |
25 | 模式2 | 1.68 | 0.04 | 1.3 | 0 | 0.38 | 2.01 | 1.31 | 1.01 | 0 1 0 |
… | … | … | … | … | … | … | … | … | … | … |
45 | 模式2 | 1.67 | 0.09 | 1.29 | 0 | 0.14 | 1.25 | 1.33 | 1.03 | 0 1 0 |
46 | 模式3 | 1.85 | 1.13 | 1.36 | 0.1 | -0.58 | 2.8 | 1.68 | 1.24 | 1 0 0 |
47 | 模式3 | 2 | 0.43 | 1.42 | 0.01 | 0.51 | 3.23 | 1.57 | 1.11 | 1 0 0 |
48 | 模式3 | 1.97 | 1.11 | 1.4 | 0.07 | 1.31 | 4.24 | 1.9 | 1.35 | 1 0 0 |
… | … | … | … | … | … | … | … | … | … | … |
90 | 模式3 | 4.55 | 1.48 | 2.13 | 0.1 | -2.22 | 7.79 | 2.26 | 1.06 | 1 0 0 |
Tab. 1 Training sample data
序号 | 故障模式 | 特征1 | 特征2 | 特征3 | 特征4 | 特征5 | 特征6 | 特征7 | 特征8 | 目标输出 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 模式1 | 3.28 | 0.17 | 1.81 | 0 | -0.19 | 2.35 | 1.86 | 1.02 | 0 0 1 |
2 | 模式1 | 3.28 | 0.19 | 1.81 | 0 | 0.32 | 2.17 | 1.87 | 1.03 | 0 0 1 |
3 | 模式1 | 3.27 | 0.18 | 1.81 | 0 | 0.26 | 2.38 | 1.87 | 1.03 | 0 0 1 |
… | … | … | … | … | … | … | … | … | … | … |
22 | 模式1 | 3.38 | 0.13 | 1.84 | 0 | -0.43 | 4.27 | 1.87 | 1.02 | 0 0 1 |
23 | 模式2 | 1.67 | 0.07 | 1.29 | 0 | -0.4 | 2.01 | 1.31 | 1.02 | 0 1 0 |
24 | 模式2 | 1.69 | 0.1 | 1.3 | 0 | -0.21 | 2.2 | 1.34 | 1.03 | 0 1 0 |
25 | 模式2 | 1.68 | 0.04 | 1.3 | 0 | 0.38 | 2.01 | 1.31 | 1.01 | 0 1 0 |
… | … | … | … | … | … | … | … | … | … | … |
45 | 模式2 | 1.67 | 0.09 | 1.29 | 0 | 0.14 | 1.25 | 1.33 | 1.03 | 0 1 0 |
46 | 模式3 | 1.85 | 1.13 | 1.36 | 0.1 | -0.58 | 2.8 | 1.68 | 1.24 | 1 0 0 |
47 | 模式3 | 2 | 0.43 | 1.42 | 0.01 | 0.51 | 3.23 | 1.57 | 1.11 | 1 0 0 |
48 | 模式3 | 1.97 | 1.11 | 1.4 | 0.07 | 1.31 | 4.24 | 1.9 | 1.35 | 1 0 0 |
… | … | … | … | … | … | … | … | … | … | … |
90 | 模式3 | 4.55 | 1.48 | 2.13 | 0.1 | -2.22 | 7.79 | 2.26 | 1.06 | 1 0 0 |
序号 | 故障模式 | 特征1 | 特征2 | 特征3 | 特征4 | 特征5 | 特征6 | 特征7 | 特征8 | 目标输出 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 模式1 | 3.37 | 0.17 | 1.84 | 0 | -0.04 | 2.5 | 1.88 | 1.03 | 0 0 1 |
2 | 模式1 | 3.54 | 0.14 | 1.88 | 0 | -0.4 | 2.51 | 1.91 | 1.02 | 0 0 1 |
3 | 模式1 | 3.6 | 0.25 | 1.9 | 0.01 | 0.17 | 1.63 | 1.96 | 1.03 | 0 0 1 |
4 | 模式2 | 1.66 | 0.08 | 1.29 | 0 | -0.43 | 2.71 | 1.32 | 1.02 | 0 1 0 |
5 | 模式2 | 1.67 | 0.05 | 1.29 | 0 | 0.78 | 2.22 | 1.32 | 1.02 | 0 1 0 |
6 | 模式3 | 3.45 | 1.93 | 1.86 | 0.29 | 1.08 | 3.17 | 2.51 | 1.35 | 1 0 0 |
7 | 模式3 | 4.2 | 2.29 | 2.05 | 0.2 | -0.02 | 3.72 | 2.68 | 1.31 | 1 0 0 |
8 | 模式3 | 4.18 | 2.19 | 2.05 | 0.37 | -1.31 | 3.57 | 2.38 | 1.16 | 1 0 0 |
9 | 模式3 | 3.61 | 2.68 | 1.9 | 0.76 | 0.16 | 1.59 | 2.75 | 1.45 | 1 0 0 |
10 | 模式3 | 4.55 | 0.93 | 2.13 | 0.04 | -1.48 | 5.62 | 2.29 | 1.07 | 1 0 0 |
Tab. 2 Test sample data
序号 | 故障模式 | 特征1 | 特征2 | 特征3 | 特征4 | 特征5 | 特征6 | 特征7 | 特征8 | 目标输出 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 模式1 | 3.37 | 0.17 | 1.84 | 0 | -0.04 | 2.5 | 1.88 | 1.03 | 0 0 1 |
2 | 模式1 | 3.54 | 0.14 | 1.88 | 0 | -0.4 | 2.51 | 1.91 | 1.02 | 0 0 1 |
3 | 模式1 | 3.6 | 0.25 | 1.9 | 0.01 | 0.17 | 1.63 | 1.96 | 1.03 | 0 0 1 |
4 | 模式2 | 1.66 | 0.08 | 1.29 | 0 | -0.43 | 2.71 | 1.32 | 1.02 | 0 1 0 |
5 | 模式2 | 1.67 | 0.05 | 1.29 | 0 | 0.78 | 2.22 | 1.32 | 1.02 | 0 1 0 |
6 | 模式3 | 3.45 | 1.93 | 1.86 | 0.29 | 1.08 | 3.17 | 2.51 | 1.35 | 1 0 0 |
7 | 模式3 | 4.2 | 2.29 | 2.05 | 0.2 | -0.02 | 3.72 | 2.68 | 1.31 | 1 0 0 |
8 | 模式3 | 4.18 | 2.19 | 2.05 | 0.37 | -1.31 | 3.57 | 2.38 | 1.16 | 1 0 0 |
9 | 模式3 | 3.61 | 2.68 | 1.9 | 0.76 | 0.16 | 1.59 | 2.75 | 1.45 | 1 0 0 |
10 | 模式3 | 4.55 | 0.93 | 2.13 | 0.04 | -1.48 | 5.62 | 2.29 | 1.07 | 1 0 0 |
spread | 0.2 | 0.18 | 0.16 | 0.14 | 0.12 | 0.1 | 0.08 |
---|---|---|---|---|---|---|---|
正确率/% | 56 | 80 | 90 | 90 | 100 | 98 | 98 |
Tab. 3 Accuracy of PNN diagnosis under different spread values
spread | 0.2 | 0.18 | 0.16 | 0.14 | 0.12 | 0.1 | 0.08 |
---|---|---|---|---|---|---|---|
正确率/% | 56 | 80 | 90 | 90 | 100 | 98 | 98 |
迭代次数 | 100 | 150 | 200 | 300 | 500 | 1 000 | 2 000 |
---|---|---|---|---|---|---|---|
正确率/% | 92 | 98 | 98 | 98 | 98 | 94 | 96 |
Tab. 4 Accuracy of WNN diagnosis under different iterations
迭代次数 | 100 | 150 | 200 | 300 | 500 | 1 000 | 2 000 |
---|---|---|---|---|---|---|---|
正确率/% | 92 | 98 | 98 | 98 | 98 | 94 | 96 |
方法 | 式(1) | 式(2) | 式(3) | 式(4) | 式(11) |
---|---|---|---|---|---|
正确率/% | 100 | 32 | 100 | 100 | 100 |
Tab. 5 Diagnostic accuracy of different fusion methods
方法 | 式(1) | 式(2) | 式(3) | 式(4) | 式(11) |
---|---|---|---|---|---|
正确率/% | 100 | 32 | 100 | 100 | 100 |
方法 | m(A1) | m(A2) | m(A3 ) | 结果 | 结果 评价 | |
---|---|---|---|---|---|---|
PNN | 0.237 3 | 0.218 4 | 0.544 3 | 0 | 模式1 | 对 |
WNN | 0.072 4 | 0.141 1 | 0.786 5 | 0 | 模式1 | 对 |
式(1) | 0.036 1 | 0.064 7 | 0.899 2 | 0 | 模式1 | 对 |
式(2) | 0.017 2 | 0.030 8 | 0.428 1 | 0.523 9 | 不定 | 错 |
式(3) | 0.088 3 | 0.113 3 | 0.733 6 | 0.064 8 | 模式1 | 对 |
式(4) | 0.098 3 | 0.125 | 0.776 7 | 0 | 模式1 | 对 |
式(11) | 0.025 2 | 0.113 9 | 0.860 9 | 0 | 模式1 | 对 |
Tab. 6 Diagnostic results of test sample 1 under different methods
方法 | m(A1) | m(A2) | m(A3 ) | 结果 | 结果 评价 | |
---|---|---|---|---|---|---|
PNN | 0.237 3 | 0.218 4 | 0.544 3 | 0 | 模式1 | 对 |
WNN | 0.072 4 | 0.141 1 | 0.786 5 | 0 | 模式1 | 对 |
式(1) | 0.036 1 | 0.064 7 | 0.899 2 | 0 | 模式1 | 对 |
式(2) | 0.017 2 | 0.030 8 | 0.428 1 | 0.523 9 | 不定 | 错 |
式(3) | 0.088 3 | 0.113 3 | 0.733 6 | 0.064 8 | 模式1 | 对 |
式(4) | 0.098 3 | 0.125 | 0.776 7 | 0 | 模式1 | 对 |
式(11) | 0.025 2 | 0.113 9 | 0.860 9 | 0 | 模式1 | 对 |
方法 | m(A1) | m(A2) | m(A3 ) | 结果 | 结果 评价 | |
---|---|---|---|---|---|---|
PNN | 0.262 9 | 0.303 2 | 0.433 9 | 0 | Type1 | 对 |
WNN | 0.169 3 | 0.465 4 | 0.365 3 | 0 | Type2 | 错 |
式(1) | 0.129 3 | 0.410 1 | 0.460 6 | 0 | Type1 | 对 |
式(2) | 0.044 5 | 0.141 1 | 0.158 5 | 0.655 9 | 不定 | 错 |
式(3) | 0.146 7 | 0.322 9 | 0.347 5 | 0.182 8 | Type1 | 对 |
式(4) | 0.186 2 | 0.393 2 | 0.420 6 | 0 | Type1 | 对 |
式(11) | 0.081 4 | 0.414 | 0.504 7 | 0 | Type1 | 对 |
Tab. 7 Diagnostic results of test sample 43 under different methods
方法 | m(A1) | m(A2) | m(A3 ) | 结果 | 结果 评价 | |
---|---|---|---|---|---|---|
PNN | 0.262 9 | 0.303 2 | 0.433 9 | 0 | Type1 | 对 |
WNN | 0.169 3 | 0.465 4 | 0.365 3 | 0 | Type2 | 错 |
式(1) | 0.129 3 | 0.410 1 | 0.460 6 | 0 | Type1 | 对 |
式(2) | 0.044 5 | 0.141 1 | 0.158 5 | 0.655 9 | 不定 | 错 |
式(3) | 0.146 7 | 0.322 9 | 0.347 5 | 0.182 8 | Type1 | 对 |
式(4) | 0.186 2 | 0.393 2 | 0.420 6 | 0 | Type1 | 对 |
式(11) | 0.081 4 | 0.414 | 0.504 7 | 0 | Type1 | 对 |
1 | 富双进 .电站风机故障预警系统的研究[D].保定:华北电力大学,2015. |
FENG S J .Research of power plant fan failure prognostic system[D].Baoding:North China Electric Power University, 2015. | |
2 | 徐卫仙,王杰,乔立捷 .发电厂锅炉引风机叶柄断裂原因分析[J].发电与空调,2015,36(6):45-47. doi:10.3969/J.ISSN.2095-3429.2015.06.013 |
XU W X, WANG J, QIAO L J .Cause analysis on fracture on blower fan petiole of power plant boiler[J].Power Generation and Air Conditioning,2015,36(6):45-47. doi:10.3969/J.ISSN.2095-3429.2015.06.013 | |
3 | 危威 .大型火电厂风机质量不平衡故障分析及处理[J].发电技术,2020,41(2):198-201. doi:10.12096/j.2096-4528.pgt.19111 |
WEI W .Analysis and treatment of mass unbalance fault of fan in large thermal power plant[J].Power Generation Technology,2020,41(2):198-201. doi:10.12096/j.2096-4528.pgt.19111 | |
4 | 张晓斌,王旭辉 .1 000 MW机组轴流式引风机振动故障诊断及治理[J].锅炉制造,2021(6):57-59. |
ZHANG X B, WANG X H .Vibration diagnosis and treatment of axial flow fan for 1 000 MW generation unit[J].Boiler Manufacturing,2021(6):57-59. | |
5 | 唐贵基,孙军科,王晓龙,等 .基于改进SSD-Teager时频分析的引风机转子故障诊断方法[J].电力自动化设备,2022,42(3):121-127. |
TANG G J, SUN J K, WANG X L, et al .Diagnosis method for rotor fault of induced draft fan based on improved SSD-Teager timer-frequency anslysis[J].Electric Power Automation Equipment,2022,42(3):121-127. | |
6 | 周琦 .基于机器学习的电站风机故障诊断研究[D].保定:华北电力大学,2019. |
ZHOU Q .Study on machine learning fault diagnosis[D].Baoding:North China Electric Power University,2019. | |
7 | PENG T, JIAN L .Research on fault diagnosis method of axial flow induced draft fan of power plant based on machine learning[C]//2019 4th International Conference on System Reliability and Safety,Rome,Italy.IEEE,2019:325-330. |
8 | JAGTAP H P, BEWOOR A K, KUMAR R .Failure analysis of induced draft fan used in a thermal power plant using coordinated condition monitoring approach:a case study[J].Engineering Failure Analysis,2020:1-18. |
9 | 韩崇昭,朱洪艳,段战胜,等 .多源信息融合[M].北京:清华大学出版社,2006. |
HAN C Z, ZHU H Y, DUAN Z S,et al .Multisource information fusion[D].Beijing:Tsinghua University Press,2006. | |
10 | YAGER R R .On the dempster-shafer framework and new combination rules[J].Information Sciences (S1007-7634),1987,41(2):93-137. |
11 | 孙全,叶秀清,顾伟康 .一种新的基于证据理论的合成公式[J].电子学报,2000,28(8): 117-119. doi:10.3321/j.issn:0372-2112.2000.08.036 |
SUN Q, YE X Q, GU W K .A new combination rules of evidence theory[J].ACTA Electronica Sinica, 2000,28(8):117-119. doi:10.3321/j.issn:0372-2112.2000.08.036 | |
12 | 李弼程,王波,魏俊,等 .一种有效的证据理论合成公式[J].数据采集与处理,2002,17(1):33-36. doi:10.3969/j.issn.1004-9037.2002.01.008 |
LI B C, WANG B, WEI J,et al .An efficient combination rule of evidence theory[J].Journal of Data Acquisition & Processing,2002,17(1):33-36. doi:10.3969/j.issn.1004-9037.2002.01.008 | |
13 | 曹洁,郭雷雷 .一种基于局部冲突分配的证据组合规则[J].计算机应用研究,2013,30(7):2033-2035. doi:10.3969/j.issn.1001-3695.2013.07.029 |
CAO J, GUO L L .Evidence combination rule based on local conflict distribution strategy[J].Application Research of Computers,2013,30(7):2033-2035. doi:10.3969/j.issn.1001-3695.2013.07.029 | |
14 | 夏飞,马茜,张浩,等 .改进D-S证据理论在电动汽车锂电池故障诊断中的应用[J].智能系统学报,2017,12(4): 526-537. doi:10.11992/tis.201605001 |
XIA F, MA X, ZHANG H,et al .Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J].CAAI Transactions on Intelligent Systems,2017,12(4): 526-537. doi:10.11992/tis.201605001 | |
15 | 邓勇,施文康,朱振福 .一种有效处理冲突证据的组合方法[J].红外与毫米波学报,2004,23(1):27-32. doi:10.3321/j.issn:1001-9014.2004.01.006 |
DENG Y, SHI W K, ZHU Z F .Efficient combination approach of conflict evidence[J].Journal of Infrared Millimeter Waves,2004,23(1):27-32. doi:10.3321/j.issn:1001-9014.2004.01.006 | |
16 | 李艺林,张林,龙捷,等 .小波包与PNN在抖动控制电路故障诊断中的应用[J].导航与控制,2018,17(6):79-85. |
LI Y L, ZHANG L, LONG J,et al .Application of wavelet packet and PNN in the fault diagnosis of dither control circuit[J].Navigation and Control,2018,17(6):79-85. | |
17 | 梁红梅,肖志怀 .基于SA-WNN模型的水电机组故障诊断研究法[J].计算机测量与控制,2016,24(8):24-27. doi:10.16526/j.cnki.11-4762/tp.2016.08.007 |
LIANG H M, XIAO Z H .Study for vibration fault diagnosis of hydro-turbine generating unit based on SA-WNN[J].Computer Measurement & Control,2016,24(8): 24-27. doi:10.16526/j.cnki.11-4762/tp.2016.08.007 |
[1] | Mingliang BAI, Dongxue ZHANG, Jinfu LIU, Jiao LIU, Daren YU. Anomaly Detection of Gas Turbine Hot Components Based on Deep Autoencoder and Support Vector Data Description [J]. Power Generation Technology, 2021, 42(4): 422-430. |
[2] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[3] | Yaguang LI, Meng LI. Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network [J]. Power Generation Technology, 2021, 42(3): 313-321. |
[4] | Changxing YANG, Luping LI. Research Progress on Blade Damage Fault Detection Technology of Wind Turbine [J]. Power Generation Technology, 2020, 41(6): 599-607. |
[5] | Wei WEI. Analysis and Treatment of Mass Unbalance Fault of Fan in Large Thermal Power Plant [J]. Power Generation Technology, 2020, 41(2): 198-201. |
[6] | Yun LUO,Xuelin CHEN,Ruidong LI,Yongjian SU,Yiwei XU,Junkai CHAO,Pengzhu LI,Haibin REN. Prediction Model and Application of Turbine Regulating Stage Pressure Under Variable Conditions [J]. Power Generation Technology, 2019, 40(2): 161-167. |
[7] | Guogang YUAN,Zhushi RAO. Review of Non-electrical Quantity Monitoring and Fault Diagnosis for Power Transformer on Vibration Analysis Method [J]. Power Generation Technology, 2019, 40(2): 134-140. |
[8] | Jianguo WANG,Yutong LIN,Ye TIAN,Peng DU,Peiyan ZHANG,Hongwei XIN,Yingjie WU. Fault Diagnosis of Rolling Bearing of Wind Turbine Based on VMD and Different Envelope Order Structure [J]. Power Generation Technology, 2018, 39(1): 63-69. |
[9] | XING Tao, LI Zhijun, CAO Lingyan, DING Lihua. Transformer Fault Diagnosis Based on Adaptive Immune Algorithm [J]. Power Generation Technology, 2017, 38(6): 42-45. |
[10] | KONG De-tong, JIA Si-yuan, WANG Tian-pin, LIU Qing-chao. Wind Turbines Fault Diagnosis Method Researched by Vibration Analysis [J]. Power Generation Technology, 2017, 38(1): 54-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||