Power Generation Technology ›› 2021, Vol. 42 ›› Issue (5): 525-536.DOI: 10.12096/j.2096-4528.pgt.21069
• Carbon Neutrality • Next Articles
Jingyi TANG1(), Shuai CHU2(
), Weichun GE2,3,*(
), Yinxuan LI4, Chuang LIU1(
)
Received:
2021-05-27
Published:
2021-10-31
Online:
2021-10-13
Contact:
Weichun GE
Supported by:
项目 | 电极式电制热 | 固态电制热 | 燃油制热 | 燃煤制热 | 燃气制热 |
热转换效率 | 99%以上 | 98% | 90% | 60%以上 | 90% |
设备成本 | 前期投资费用相对适中;后期运行维护费用相对适中 | 前期投资费用较低;后期运行维护费用相对适中 | 前期投资费用高;后期运行维护费用高 | 前期投资费用低;后期运行维护费用低 | 前期投资费用较低;后期运行维护费用低 |
占地面积 | 小 | 小 | 较大 | 大 | 较小 |
工艺复杂程度 | 工艺要求高,需要专业人员操作 | 常规操作要求,一般人员可进行作业 | 操作过程较繁杂;维护工作繁杂 | 常规操作要求,一般人员可进行作业 | 常规操作要求,一般人员可进行作业 |
调节性能 | 负荷调节范围在0%~100%,低负荷运行性能较好,能够实现无级调节 | 分级调节 | 负荷调节范围在20%~100%,低负荷运行性能较差 | 低负荷运行性能差 | 负荷调节能力一般 |
爬坡速率 | 冷备用启动时间小于1 h;热备用启动时间小于10 min | 爬坡速度较快 | 冷态启动时,达到满负荷时间大于3 h;热态启动时,达满负荷需要30 min | 惯性大,负荷响应慢 | 爬坡速率较快 |
安全程度 | 浸没电极式电制热安全程度高;喷射电极式电锅炉安全程度较低,有氢爆危险 | 安全程度较高 | 安全程度低,易发生爆炸危险 | 安全程度相对适中 | 安全程度低,易发生爆炸危险 |
Tab. 1 Comparison of performance indexes of heating modes
项目 | 电极式电制热 | 固态电制热 | 燃油制热 | 燃煤制热 | 燃气制热 |
热转换效率 | 99%以上 | 98% | 90% | 60%以上 | 90% |
设备成本 | 前期投资费用相对适中;后期运行维护费用相对适中 | 前期投资费用较低;后期运行维护费用相对适中 | 前期投资费用高;后期运行维护费用高 | 前期投资费用低;后期运行维护费用低 | 前期投资费用较低;后期运行维护费用低 |
占地面积 | 小 | 小 | 较大 | 大 | 较小 |
工艺复杂程度 | 工艺要求高,需要专业人员操作 | 常规操作要求,一般人员可进行作业 | 操作过程较繁杂;维护工作繁杂 | 常规操作要求,一般人员可进行作业 | 常规操作要求,一般人员可进行作业 |
调节性能 | 负荷调节范围在0%~100%,低负荷运行性能较好,能够实现无级调节 | 分级调节 | 负荷调节范围在20%~100%,低负荷运行性能较差 | 低负荷运行性能差 | 负荷调节能力一般 |
爬坡速率 | 冷备用启动时间小于1 h;热备用启动时间小于10 min | 爬坡速度较快 | 冷态启动时,达到满负荷时间大于3 h;热态启动时,达满负荷需要30 min | 惯性大,负荷响应慢 | 爬坡速率较快 |
安全程度 | 浸没电极式电制热安全程度高;喷射电极式电锅炉安全程度较低,有氢爆危险 | 安全程度较高 | 安全程度低,易发生爆炸危险 | 安全程度相对适中 | 安全程度低,易发生爆炸危险 |
1 | 王鑫. 中国争取2060年前实现碳中和[J]. 生态经济, 2020, 36 (12): 9- 12. |
WANG X . China strives for carbon neutrality by 2060[J]. Ecological Economy, 2020, 36 (12): 9- 12. | |
2 | 黄晶. 中国2060年实现碳中和目标亟需强化科技支撑[J]. 可持续发展经济导刊, 2020, (10): 15- 16. |
HUANG J . China's goal of carbon neutrality by 2060 needs to be reinforced by science and technology[J]. China Sustainability Tribune, 2020, (10): 15- 16. | |
3 | 赵国涛, 丁泉, 付军华, 等. 基于多市场联动的区域能源系统低碳路径研究[J]. 电力建设, 2021, 42 (3): 19- 26. |
ZHAO G T , DING Q , FU J H , et al. Research on the low-carbon implementation path of regional energy system relying on the linkage mechanism of multi-markets[J]. Electric Power Construction, 2021, 42 (3): 19- 26. | |
4 |
童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力, 2021, 49 (5): 1- 6.
DOI |
TONG G Y . Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49 (5): 1- 6.
DOI |
|
5 |
杨梓萤, 姚李孝. 梯级水库等效蓄能在风电消纳中的应用[J]. 电网与清洁能源, 2021, 37 (6): 134- 138.
DOI |
YANG Z Y , YAO L X . A multi-channel feature combination model for ultra-short-term wind power prediction under carbon neutral background[J]. Power System and Clean Energy, 2021, 37 (6): 134- 138.
DOI |
|
6 | 崔明勇, 靳贺, 何良策, 等. 基于风电消纳评估的电力系统鲁棒低碳经济调度[J]. 太阳能学报, 2020, 41 (8): 270- 280. |
CUI M Y , JIN H , HE L C , et al. Robust low-carbon economic dispatch of power system based on wind power accommodation evaluation[J]. Acta Energiae Solaris Sinica, 2020, 41 (8): 270- 280. | |
7 |
刘军, 宋词, 程军照, 等. 考虑风电及分时电价的机组组合问题研究[J]. 智慧电力, 2020, 48 (5): 14- 21.
DOI |
LIU J , SONG C , CHENG J Z , et al. Unit combination considering wind power and time-sharing electricity price[J]. Smart Power, 2020, 48 (5): 14- 21.
DOI |
|
8 | 马立新, 程颍. 计及可中断负荷的园区综合能源系统优化调度[J/OL]. 系统仿真学报: 1-9[2021-05-01]. https://doi.org/10.16182/j.issn1004731x.joss.20-0893. |
MA L X, CHENG Y. Optimal operation for park integrated energy system considering interruptible loads[J/OL]. Journal of System Simulation: 1-9[2021-05-01]. https://doi.org/10.16182/j.issn1004731x.joss.20-0893. | |
9 | 王晓露, 郭欢, 张华良, 等. 火电厂热电联产机组与压缩空气储能集成系统能量耦合特性分析[J]. 储能科学与技术, 2021, 10 (2): 598- 610. |
WANG X L , GUO H , ZHANG H L , et al. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants[J]. Energy Storage Science and Technology, 2021, 10 (2): 598- 610. | |
10 | 王振浩, 许京剑, 田春光, 等. 计及碳交易成本的含风电电力系统热电联合调度[J]. 太阳能学报, 2020, 41 (12): 245- 253. |
WANG Z H , XU J J , TIAN C G , et al. Combined heat and power scheduling strategy considering carbon trading cost in wind power system[J]. Acta Energiae Solaris Sinica, 2020, 41 (12): 245- 253. | |
11 | 杨挺, 于亚利, 张亚健, 等. 计及热电耦合的太阳能联产系统功率协调控制[J]. 电网技术, 2020, 44 (9): 3433- 3440. |
YANG T , YU Y L , ZHANG Y J , et al. Coordination control for integrated solar combined cycle with thermoelectric coupling[J]. Power System Technology, 2020, 44 (9): 3433- 3440. | |
12 | 潘明夷, 刘念, 雷金勇. 含热电联产机组的分布式能源集群动态划分方法[J]. 电力系统自动化, 2021, 45 (1): 168- 176. |
PAN M Y , LIU N , LEI J Y . Dynamic partition method for distributed energy cluster with combined heat and power unit[J]. Automation of Electric Power Systems, 2021, 45 (1): 168- 176. | |
13 | 陈建华, 吴文传, 张伯明, 等. 消纳大规模风电的热电联产机组滚动调度策略[J]. 电力系统自动化, 2012, 36 (24): 21- 27. |
CHEN J H , WU W C , ZHANG B M , et al. A rolling generation dispatch strategy for co-generation units accommodating large-scale wind power integration[J]. Automation of Electric Power Systems, 2012, 36 (24): 21- 27. | |
14 | 李军徽, 付英男, 李翠萍, 等. 提升风电消纳的储热电混合储能系统经济优化配置[J]. 电网技术, 2020, 44 (12): 4547- 4557. |
LI J H , FU Y N , LI C P , et al. Economic optimal configuration of hybrid energy storage system for improving wind power consumption[J]. Power System Technology, 2020, 44 (12): 4547- 4557. | |
15 | 章艳, 吕泉, 李杨, 等. 四种热电厂电热解耦改造方案的运行灵活性剖析[J]. 电力系统自动化, 2020, 44 (2): 164- 172. |
ZHANG Y , LV Q , LI Y , et al. Analysis on operation flexibility of combined heat and power plant with four improved power-heat decoupling schemes[J]. Automation of Electric Power Systems, 2020, 44 (2): 164- 172. | |
16 | 罗毅, 邱实. 基于负荷侧响应的含储热热电联产的风电消纳模型[J]. 太阳能学报, 2021, 42 (2): 90- 96. |
LUO Y , QIU S . A wind power consumption model of CHP with thermal energy storage based on demand response[J]. Acta Energiae Solaris Sinica, 2021, 42 (2): 90- 96. | |
17 |
刘方, 杨秀, 黄海涛, 等. 含热电联产热电解耦运行方式下的微网能量综合优化[J]. 电力系统及其自动化学报, 2016, 28 (1): 51- 57.
DOI |
LIU F , YANG X , HUANG H T , et al. Integrated optimization of micro grid energy under decoupled operation mode of cogeneration with cogeneration[J]. Proceedings of the CSU-EPSA, 2016, 28 (1): 51- 57.
DOI |
|
18 | 徐飞, 闵勇, 陈磊, 等. 包含大容量储热的电-热联合系统[J]. 中国电机工程学报, 2014, 34 (29): 5063- 5072. |
XU F , MIN Y , CHEN L , et al. Combined electricity-heat operation system containing large capacity thermal energy storage[J]. Proceedings of the CSEE, 2014, 34 (29): 5063- 5072. | |
19 | 曹丽华, 丁皓轩, 葛维春, 等. 基于遗传算法的热电机组储热罐最优运行策略[J]. 中国电机工程学报, 2020, 40 (11): 3574- 3583. |
CAO L H , DING H X , GE W C , et al. Optimal operation strategy of heat storage tank in CHP unit based on genetic algorithm[J]. Proceedings of the CSEE, 2020, 40 (11): 3574- 3583. | |
20 | 刘明华, 刘文霞, 刘晨苗, 等. 电极式锅炉参与电网调频服务下供热系统日前优化调度[J]. 电力建设, 2020, 41 (1): 1- 12. |
LIU M H , LIU W X , LIU C M , et al. Day-ahead optimal dispatching of heating system when electrode boiler participating in frequency regulation service[J]. Electric Power Construction, 2020, 41 (1): 1- 12. | |
21 | 葛维春, 李昭, 赵东, 等. 含电极式电锅炉的地区电网电源侧综合效益分析[J]. 山东大学学报(工学版), 2020, 50 (5): 90- 98. |
GE W C , LI Z , ZHAO D , et al. Comprehensive benefits analysis of power supply side of regional power grid with electrode-type electric boiler[J]. Journal of Shandong University (Engineering Science), 2020, 50 (5): 90- 98. | |
22 | 吕泉, 姜浩, 陈天佑, 等. 基于电锅炉的热电厂消纳风电方案及其国民经济评价[J]. 电力系统自动化, 2014, 38 (1): 6- 12. |
LV Q , JING H , CHEN T Y , et al. Wind power consumption scheme of thermal power plant based on electric boiler and its national economic evaluation[J]. Automation of Electric Power Systems, 2014, 38 (1): 6- 12. | |
23 | 宋杰, 张卫国, 李树鹏, 等. 蓄热式电采暖负荷参与风电消纳运行策略研究[J]. 电力系统保护与控制, 2021, 49 (3): 80- 87. |
SONG J , ZHANG W G , LI S P , et al. Research on operational strategy for regenerative electric heating load participating in wind power consumption[J]. Power System Protection and Control, 2021, 49 (3): 80- 87. | |
24 | 崔杨, 张家瑞, 王铮, 等. 计及含储热光热电站与电锅炉联合运行的供热期弃风消纳策略[J]. 高电压技术, 2021, 47 (6): 2250- 2260. |
CUI Y , ZHANG J R , WANG Z , et al. Strategy of wind power accommodation in heating season considering joint operation of concentrated solar power plant and electric boiler[J]. High Voltage Engineering, 2021, 47 (6): 2250- 2260. | |
25 | 赵峰, 张承慧, 孙波, 等. 冷热电联供系统的三级协同整体优化设计方法[J]. 中国电机工程学报, 2015, 35 (15): 3785- 3793. |
ZHAO F , ZHANG C H , SUN B , et al. Three-stage collaborative global optimization design method of combined cooling heating and power[J]. Proceedings of the CSEE, 2015, 35 (15): 3785- 3793. | |
26 |
周任军, 康信文, 李绍金, 等. 冷热电联供系统能量流函数及运行策略[J]. 电力自动化设备, 2014, 34 (1): 1- 5.
DOI |
ZHOU R J , KANG X W , LI S J , et al. Energy flow function and operational strategy of CCHP system[J]. Electric Power Automation Equipment, 2014, 34 (1): 1- 5.
DOI |
|
27 |
刘星月, 吴红斌. 太阳能综合利用的冷热电联供系统控制策略和运行优化[J]. 电力系统自动化, 2015, 39 (12): 1- 6.
DOI |
LIU X Y , WU H B . A control strategy and operation optimization of combined cooling heating and power system considering solar comprehensive utilization[J]. Automation of Electric Power Systems, 2015, 39 (12): 1- 6.
DOI |
|
28 | 宋杰, 李树鹏, 张卫国, 等. 含蓄热式电采暖的综合能源系统日前优化调度策略研究[J]. 智慧电力, 2021, 49 (4): 14- 20. |
SONG J , LI S P , ZHANG W G , et al. Day-ahead optimized dispatching strategy of integrated energy system with regenerative electric heating[J]. Smart Power, 2021, 49 (4): 14- 20. | |
29 | 牛传凯, 李铮伟. 采用电极锅炉的风电供热系统设计及经济性[J]. 煤气与热力, 2019, 39 (8): 12- 15. |
NIU C K , LI Z W . Design and economy of wind power Heating system using electrode boiler[J]. Gas & Heat, 2019, 39 (8): 12- 15. | |
30 | 汪喆, 戴刚平, 张大长, 等. 浸没式电极锅炉筒体的绝缘性能研究[J]. 科技风, 2019, (3): 162- 163. |
WANG Z , DAI G P , ZHANG D C , et al. Study on insulation performance of immersed electrode boiler shell[J]. Technology Wind, 2019, (3): 162- 163. | |
31 | 冯忠宝, 强硕, 王松寒, 等. 基于电极式锅炉的火电厂调峰方法仿真试验分析[J]. 内蒙古电力技术, 2018, 36 (3): 16- 20. |
FENG Z B , QIANG S , WANG S H , et al. Simulation and research on peak regulation method of thermal power plant based on electrode boiler[J]. Inner Mongolia Electric Power, 2018, 36 (3): 16- 20. | |
32 | 袁雪峰. 电极浸入式锅炉系统机理建模及动态特性研究[D]. 保定: 华北电力大学, 2019. |
YUAN X F. Study on mechanism modeling and dynamic characteristics of submerged electrode boiler system[D]. Baoding: North China Electric Power University, 2019. | |
33 |
郭锋, 夏青扬, 刘杨. 浸没式电极锅炉原理及应用[J]. 能源研究与管理, 2012, (2): 65- 67.
DOI |
GUO F , XIA Q Y , LIU Y . Theory and application of immersion-type electrode boiler[J]. Energy Research and Management, 2012, (2): 65- 67.
DOI |
|
34 | 刘书农, 董锐. 电极式热水锅炉直接接入市政电网的可行性探讨[J]. 智能建筑电气技术, 2012, 6 (6): 94- 97. |
LIU S N , DONG R . Feasibility discussion on the direct connection of electrode-type hot water boiler to the municipal power supply network[J]. Electrical Technology of Intelligent Buildings, 2012, 6 (6): 94- 97. | |
35 | 邢作霞, 樊金鹏, 陈雷, 等. 固态电制热储热传热匹配特性及热控制方法[J]. 电工技术学报, 2020, 35 (11): 2439- 2447. |
XING Z X , FAN J P , CHEN L , et al. Heat transfer matching characteristic and heat control method of solid-state electric heating thermal storage system[J]. Transactions of China Electrotechnical Society, 2020, 35 (11): 2439- 2447. | |
36 | 刘景霞, 潘跃. 基于固体电蓄热锅炉的弃风消纳多目标优化[J]. 自动化应用, 2020, (7): 93- 95. |
LIU J X , PAN Y . Multi objective optimization of waste air consumption based on solid electric heat storage boiler[J]. Automation Application, 2020, (7): 93- 95. | |
37 | 耿健, 杨冬梅, 高正平, 等. 含储能的冷热电联供分布式综合能源微网优化运行[J]. 电力工程技术, 2021, 40 (1): 25- 32. |
GENG J , YANG D M , GAO Z P , et al. Optimal operation of distributed integrated energy microgrid with CCHP considering energy storage[J]. Electric Power Engineering Technology, 2021, 40 (1): 25- 32. | |
38 | 殷仁豪, 卢海勇. "煤改电"推进过程中电锅炉和空气源热泵供暖系统的比较研究[J]. 上海节能, 2020, (9): 1015- 1019. |
YIN R H , LU H Y . Comparative study on heating system of electric boiler and air source heat pump in the process of "coal to electricity" promotion[J]. Shanghai Energy Conservation, 2020, (9): 1015- 1019. | |
39 | 陈军华, 章文杰, 徐鹏志, 等. 电厂锅炉优化改造试验分析[J]. 发电技术, 2019, 40 (1): 61- 65. |
CHEN J H , ZHANG W J , XU P Z , et al. Experimental and analysis on optimization of a boiler in power plant[J]. Power Generation Technology, 2019, 40 (1): 61- 65. | |
40 | 秦朝葵, 张超, 朱晗. 基于现场实测的燃气热泵(GHP)性能研究[J]. 城市燃气, 2020, (12): 29- 38. |
QIN Z K , ZHANG C , ZHU H . Performance research of gas heat pump (GHP) based on field measurement[J]. Urban Gas, 2020, (12): 29- 38. | |
41 | 湛金. 某矿山企业蓄热式电锅炉蓄热方式比选[J]. 世界有色金属, 2020, (13): 209- 210. |
ZHAN J . Selection of heat storage method for regenerative electric boiler in a mining enterprise[J]. World Nonferrous Metals, 2020, (13): 209- 210. | |
42 | 邱国华, 徐鹏志. 掺烧固废燃料的循环流化床锅炉引风机叶片腐蚀原因分析[J]. 发电技术, 2020, 41 (6): 681- 688. |
QIU G H , XU P Z . Analysis on corrosion causes of induced draft fan blade in circulating fluidized bed boiler with mixed burning solid waste fuel[J]. Power Generation Technology, 2020, 41 (6): 681- 688. | |
43 | 潘跃. 固体蓄热式电锅炉弃风消纳优化研究[D]. 内蒙古: 内蒙古科技大学, 2020. |
PAN Y. Study on optimization of abandoned wind power consumption in solid regenerative electric boilers[D]. Inner Mongolia: Inner Mongolia University of Science & Technology, 2020. | |
44 | 曾雪彤, 谭建成. 风电企业参与电力市场研究综述[J]. 浙江电力, 2019, 38 (7): 20- 28. |
ZENG X T , TAN J C . Review of wind power enterprises' participation in power market[J]. Zhejiang Electric Power, 2019, 38 (7): 20- 28. | |
45 | 王茂贵, 吕洪坤, 李剑. 浙江省燃煤机组深度调峰综述[J]. 浙江电力, 2019, 38 (5): 90- 97. |
WANG M G , LYU H K , LI J . Review on deep peak regulation of coal-fired generating units in Zhejiang Province[J]. Zhejiang Electric Power, 2019, 38 (5): 90- 97. | |
46 | 张志, 邵尹池, 伦涛, 等. 电化学储能系统参与调峰调频政策综述与补偿机制探究[J]. 电力工程技术, 2020, 39 (5): 71- 78. |
ZHANG Z , SHAO Y C , LUN T , et al. Review on the policies and compensation mechanism of BESS participation in the auxiliary service of frequency and peak modulation[J]. Electric Power Engineering Technology, 2020, 39 (5): 71- 78. | |
47 | 杨肖虎, 罗剑波, 郁琛, 等. 适应大规模新能源并网的电力系统备用配置及优化综述[J]. 电力工程技术, 2020, 39 (1): 10- 21. |
YANG X H , LUO J B , YU C , et al. Review of power system reserve configuration and optimization for large-scale renewable energy integration[J]. Electric Power Engineering Technology, 2020, 39 (1): 10- 21. | |
48 | 马恒瑞, 王波, 高文忠, 等. 考虑调频补偿效果的区域综合能源系统调频服务优化策略[J]. 电力系统自动化, 2018, 42 (13): 127- 135. |
MA H R , WANG B , GAO W Z . Optimization strategy for frequency regulation service of regional integrated energy systems considering compensation effect of frequency regulation[J]. Automation of Electric Power Systems, 2018, 42 (13): 127- 135. | |
49 | 于昌海, 吴继平, 杨海晶, 等. 规模化储能系统参与电网调频的控制策略研究[J]. 电力工程技术, 2019, 38 (4): 68- 74. |
YU C H , WU J P , YANG H J , et al. Frequency regulation strategy for power grid incorporating large-scale energy storage[J]. Electric Power Engineering Technology, 2019, 38 (4): 68- 74. | |
50 | 叶季蕾, 李斌, 张宇, 等. 基于全球能源互联网典型特征的储能需求及配置分析[J]. 发电技术, 2021, 42 (1): 20- 30. |
YE J L , LI B , ZHANG Y , et al. Energy storage requirements and configuration analysis based on typical characteristics of global energy internet[J]. Power Generation Technology, 2021, 42 (1): 20- 30. |
[1] | Xiaolian ZHANG, Achuan SUN, Sipeng HAO, Leyan XU, Qichuan WU. Multi-Machine Cooperative Control Strategy of Wind Farm Participating in Power Grid Frequency Modulation [J]. Power Generation Technology, 2024, 45(3): 448-457. |
[2] | Zhan LI, Zhenyong YANG, Lei LIU, Zhensan CHEN, Weiming JI, Feng HONG. Analysis of the Influence of Furnace Side Heat Storage Coefficient on Primary Frequency Modulation Capacity Under Deep Modulation Condition of Thermal Power Unit [J]. Power Generation Technology, 2024, 45(2): 226-232. |
[3] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[4] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[5] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[6] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[7] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[8] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[9] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[10] | Hu GAO, Fan LIU, Hai LI. Opportunities, Challenges and Application Prospects of Ammonia Fuel Under the Target of Carbon Neutrality [J]. Power Generation Technology, 2022, 43(3): 462-467. |
[11] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
[12] | Kai ZHU, Yanhong ZHANG. Research on Application of Hydrogen in Power Industry Under “Double Carbon” Circumstance [J]. Power Generation Technology, 2022, 43(1): 65-72. |
[13] | Lin LI, Tongyu LIU, Shuang LI, Yixiang SHI, Ningsheng CAI. Research Progress of Hydrogen Production by Methanol Reforming for Fuel Cell Power Generation [J]. Power Generation Technology, 2022, 43(1): 44-53. |
[14] | Baozhong ZHOU, Dunnan LIU, Jiguang ZHANG, Yi LI, Erfeng XU, Sheng BI. Research on Optimal Allocation of Multi-Energy Complementary Project of Wind-Solar-Thermal Integration [J]. Power Generation Technology, 2022, 43(1): 10-18. |
[15] | Hongli JIANG, Yuxi LIU, Yiming FENG, Baozhong ZHOU, Yuxi LI. Analysis of Power Generation Technology Trend in 14th Five-Year Plan Under the Background of Carbon Peak and Carbon Neutrality [J]. Power Generation Technology, 2022, 43(1): 54-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||