Power Generation Technology ›› 2020, Vol. 41 ›› Issue (6): 631-637.DOI: 10.12096/j.2096-4528.pgt.19174
• New and Renewable Energy • Previous Articles Next Articles
Guohui XIE(), Nana LI, Bo YUAN
Received:
2020-05-20
Published:
2020-12-31
Online:
2021-01-12
Supported by:
区域 | 风电 | 光伏电站 | 分布式光伏 | 风电+光伏合计 | |
三北 | 华北 | 124 193 | 121 541 | 20 035 | 265 769 |
东北 | 82 844 | 5 160 | 8 706 | 96 710 | |
西北 | 124 444 | 373 543 | 8 772 | 506 759 | |
合计 | 331 481 | 500 244 | 37 513 | 869 238 | |
东中部和南方 | 华中 | 7 063 | 2 397 | 35 073 | 44 533 |
华东 | 3 151 | 2 278 | 23 385 | 28 814 | |
南方 | 9 370 | 1 478 | 17 410 | 28 258 | |
合计 | 19 584 | 6 152 | 75 868 | 101 604 |
Tab. 1 New energy resources potentials results 万kW
区域 | 风电 | 光伏电站 | 分布式光伏 | 风电+光伏合计 | |
三北 | 华北 | 124 193 | 121 541 | 20 035 | 265 769 |
东北 | 82 844 | 5 160 | 8 706 | 96 710 | |
西北 | 124 444 | 373 543 | 8 772 | 506 759 | |
合计 | 331 481 | 500 244 | 37 513 | 869 238 | |
东中部和南方 | 华中 | 7 063 | 2 397 | 35 073 | 44 533 |
华东 | 3 151 | 2 278 | 23 385 | 28 814 | |
南方 | 9 370 | 1 478 | 17 410 | 28 258 | |
合计 | 19 584 | 6 152 | 75 868 | 101 604 |
发电类型 | 装机容量/亿kW | 发电量/(亿kW·h) | 折标煤量/亿t |
水电 | 4.0 | 12 000 | 3.60 |
核电 | 1.0 | 7 000 | 2.10 |
风电 | 6.0 | 12 000 | 3.60 |
光伏发电 | 8.0 | 9 600 | 2.88 |
光热发电 | 0.2 | 700 | 0.21 |
生物质发电 | 0.5 | 2000 | 0.60 |
Tab. 2 Bottom-line demand of installed new energy generation in 2030
发电类型 | 装机容量/亿kW | 发电量/(亿kW·h) | 折标煤量/亿t |
水电 | 4.0 | 12 000 | 3.60 |
核电 | 1.0 | 7 000 | 2.10 |
风电 | 6.0 | 12 000 | 3.60 |
光伏发电 | 8.0 | 9 600 | 2.88 |
光热发电 | 0.2 | 700 | 0.21 |
生物质发电 | 0.5 | 2000 | 0.60 |
发电类型 | 装机容量/亿kW | 发电量/(亿kW·h) | 折标煤量/亿t |
水电 | 5.4 | 18 900 | 5.67 |
核电 | 2.2 | 15 400 | 4.62 |
风电 | 13.0 | 26 000 | 7.80 |
光伏发电 | 14.0 | 16 800 | 5.04 |
光热发电 | 1.0 | 3 500 | 1.05 |
生物质发电 | 1.0 | 4 000 | 1.20 |
Tab. 3 Bottom-line demand of installed new energy generation in 2050
发电类型 | 装机容量/亿kW | 发电量/(亿kW·h) | 折标煤量/亿t |
水电 | 5.4 | 18 900 | 5.67 |
核电 | 2.2 | 15 400 | 4.62 |
风电 | 13.0 | 26 000 | 7.80 |
光伏发电 | 14.0 | 16 800 | 5.04 |
光热发电 | 1.0 | 3 500 | 1.05 |
生物质发电 | 1.0 | 4 000 | 1.20 |
1 | 国网能源研究院. 中国新能源发电分析报告[M]. 北京: 中国电力出版社, 2019: 32- 35. |
State Grid Energy Research Institute . China's new energy power generation analysis report[M]. Beijing: China Electric Power Press, 2019: 32- 35. | |
2 | 国家电网有限公司.国家电网有限公司服务新能源发展报告[R].北京: 国家电网有限公司, 2019. |
State Grid Corporation of China. State grid service new energy development report[R].Beijing: State Grid Corporation of China, 2019. | |
3 | 张运洲, 刘俊, 张晋芳, 等. 中国新能源"后补贴时期"发展分析[J]. 中国电力, 2019, 52 (4): 1- 7. |
ZHANG Y Z , LIU J , ZHANG J F , et al. Study on the development of renewable energy during "post-subsidy period" in China[J]. Electric Power, 2019, 52 (4): 1- 7. | |
4 | 弭辙, 张晋芳, 刘俊, 等. 面向促进新能源消纳的源网荷贡献度分解算法[J]. 发电技术, 2019, 40 (6): 509- 515. |
MI Z , ZHANG J F , LIU J , et al. Decomposition algorithm of source-grid-load contribution for promoting renewable energy accommodation[J]. Power Generation Technology, 2019, 40 (6): 509- 515. | |
5 | 刘德旭, 刘艳, 潘永旗, 等. 基于可再生能源发电优先消纳的电力电量平衡模型研究[J]. 电网与清洁能源, 2020, 36 (1): 64- 71. |
LIU D X , LIU Y , PAN Y Q , et al. Research on power balance model based on priority consumption of renewable energy power generation[J]. Power System and Clean Energy, 2020, 36 (1): 64- 71. | |
6 | 刘瑞丰, 王睿, 刘庆, 等. 促进新能源发展的西北电力调峰容量市场机制初探[J]. 电网与清洁能源, 2020, 36 (9): 93- 99. |
LIU R F , WANG R , LIU Q , et al. Research on the mechanism of peak-regulating capacity market in northwest China to promote the development of new energy[J]. Power System and Clean Energy, 2020, 36 (9): 93- 99. | |
7 | 谢国辉, 樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47 (6): 32- 37. |
XIE G H , FAN H . Prediction model of concentrating solar power technology maturity[J]. Journal of Shandong University (Engineering Science), 2017, 47 (6): 32- 37. | |
8 | 中国气象局. 中国风能资源评估报告[M]. 北京: 气象出版社, 2017: 114 |
China Meteorological Administration . China wind energy resource assessment report[M]. Beijing: China Meteorological Press, 2017: 114 | |
9 | 中国气象局. 太阳能资源评估报告[M]. 北京: 气象出版社, 2017: 125- 126. |
China Meteorological Administration . Solar energy resource assessment report[M]. Beijing: China Meteorological Press, 2017: 125- 126. | |
10 | 程路, 张运洲, 辛颂旭. 能源消费基数增加后实现2020年非化石能源占比15%目标分析[J]. 中国电力, 2015, 48 (9): 5- 8. |
CHENG L , ZHANG Y Z , XIN S X . Analysis on the target of achieving 15% non-fossil energy by 2020 after increasing the energy consumption base[J]. Electric Power, 2015, 48 (9): 5- 8. | |
11 | 国网能源研究院. 中国能源电力发展展望[M]. 北京: 中国电力出版社, 2018: 124- 125. |
State Grid Energy Research Institute . China's energy and electricity development prospects[M]. Beijing: China Electric Power Press, 2018: 124- 125. | |
12 | 刘志超, 王洪彬, 沙浩, 等. 我国风电利用技术现状及其前景分析[J]. 发电技术, 2019, 40 (4): 389- 394. |
LIU Z C , WANG H B , SHA H , et al. Status and prospect analysis of wind power utilization technology in China[J]. Power Generation Technology, 2019, 40 (4): 389- 394. | |
13 | 邓忻依, 艾欣. 分布式光伏储能系统综合效益评估与激励机制[J]. 发电技术, 2018, 39 (1): 30- 36. |
DENG X Y , AI X . Comprehensive benefit assessment and incentive mechanism of distributed photovoltaic energy storage system[J]. Power Generation Technology, 2018, 39 (1): 30- 36. |
[1] | Hongbo LIU, Shencheng LIU, Xueyang GAI, Yongfa LIU, Yutong YAN. Overview of Active Distribution Network Planning With High Proportion of New Energy Access [J]. Power Generation Technology, 2024, 45(1): 151-161. |
[2] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[3] | Haibin YU, Yuchen ZHANG, Yangyang LIU, Zengjie LU, Jinde WENG. Optimal Dispatching Bidding Strategy of Multi-Agent Virtual Power Plant Participating in Electricity Market Under Carbon Trading Mechanism [J]. Power Generation Technology, 2023, 44(5): 634-644. |
[4] | Jianlin LI, Chenxi SHAO, Zedong ZHANG, Zhonghao LIANG, Fei ZENG. Analysis of Hydrogen Industry Policy and Commercialization Model [J]. Power Generation Technology, 2023, 44(3): 287-295. |
[5] | Yang XIAO, Zhiqiang LI, Lin CHENG, Lei TANG, Chao XIA, Ying LIANG, Rui SONG, Dongyang WANG, Hewen LI. AVC Comprehensive Coordinated Control Strategy of Centralized Condenser in Northwest Power Grid [J]. Power Generation Technology, 2023, 44(2): 270-279. |
[6] | Xiyong YANG, Yangfei ZHANG, Gang LIN, Yuzhuo ZHANG, Yunzhan AN, Haotian YANG. Multi-Time Scale Collaborative Optimal Scheduling Strategy for Source-Load-Storage Considering Demand Response [J]. Power Generation Technology, 2023, 44(2): 253-260. |
[7] | Guangde DONG, Daoming LI, Yongtao CHEN, Xing MA, Ang FU, Gang MU, Bai XIAO. Power Quality Disturbance Classification Method Based on Particle Swarm Optimization and Convolutional Neural Network [J]. Power Generation Technology, 2023, 44(1): 136-142. |
[8] | Xin YIN, Feng ZHANG, Balati ADILI, Xiqiang CHANG, Wuhui CHEN, Changjun LI, Xueming LI, Shaowei YUAN. Study on Participation of Electricity-driven Thermal Load in Real-time Scheduling of New Power System [J]. Power Generation Technology, 2023, 44(1): 115-124. |
[9] | Junsheng ZHENG, Xinrong LÜ, Jim P. ZHENG. Performance Analysis and Application of Lithium Ion Capacitors [J]. Power Generation Technology, 2022, 43(5): 775-783. |
[10] | Yibo HAO, Xili DU, Xiaozhu LI, Laijun CHEN. Shared Energy Storage Trading Mode of New Energy Station Group Considering Energy Storage Performance Difference [J]. Power Generation Technology, 2022, 43(5): 687-697. |
[11] | Jianwei LIU, Xuebin LI, Xiaoou LIU. Distributed Power Access and Energy Storage Configuration in Active Distribution Network [J]. Power Generation Technology, 2022, 43(3): 476-484. |
[12] | Kai ZHU, Yanhong ZHANG. Research on Application of Hydrogen in Power Industry Under “Double Carbon” Circumstance [J]. Power Generation Technology, 2022, 43(1): 65-72. |
[13] | Baozhong ZHOU, Dunnan LIU, Jiguang ZHANG, Yi LI, Erfeng XU, Sheng BI. Research on Optimal Allocation of Multi-Energy Complementary Project of Wind-Solar-Thermal Integration [J]. Power Generation Technology, 2022, 43(1): 10-18. |
[14] | Jingyi TANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Difference Between Electrode Electric Heating and Traditional Heating and Its Application Prospect in Carbon Neutrality [J]. Power Generation Technology, 2021, 42(5): 525-536. |
[15] | Xiwu LENG. The Analysis of 2021 Texas' Rotating Blackout Incident and Its Enlightenment to the Reform of China Power Grid [J]. Power Generation Technology, 2021, 42(2): 151-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||