发电技术 ›› 2023, Vol. 44 ›› Issue (2): 201-212.DOI: 10.12096/j.2096-4528.pgt.22001
郭学伯1, 范良迟1, 许浈婧1, 李有2, 林俊3, 陈林1
收稿日期:
2022-03-01
出版日期:
2023-04-30
发布日期:
2023-04-28
作者简介:
基金资助:
Xuebo GUO1, Liangchi FAN1, Zhenjing XU1, You LI2, Jun LIN3, Lin CHEN1
Received:
2022-03-01
Published:
2023-04-30
Online:
2023-04-28
Supported by:
摘要:
相变储热是一种发展较为成熟、工艺简单且储热密度高的储热技术,其基本恒温的蓄放热过程能减少能量品味的损失,应用前景广阔。围绕相变储热技术所涉及的关键材料,介绍了不同应用条件下各类相变材料的优缺点,综述了相变储热材料在余热回收利用、太阳能光热转化存储、储能电池热管理、建筑储热等方面的应用,着重总结了相变储热材料在减少相变过程泄漏、提高热导率、减小过冷度及腐蚀影响等方面的研究进展。鉴于储热材料有助于实现节约能源、降低碳排放的社会发展目标,有必要持续开展储热材料的研发工作,不断提高储热材料的综合性能。
中图分类号:
郭学伯, 范良迟, 许浈婧, 李有, 林俊, 陈林. 助力节能降碳的相变储热材料研究和应用进展[J]. 发电技术, 2023, 44(2): 201-212.
Xuebo GUO, Liangchi FAN, Zhenjing XU, You LI, Jun LIN, Lin CHEN. Research and Application Progress of Phase Change Thermal Energy Storage Materials for Energy Saving and Carbon Reduction[J]. Power Generation Technology, 2023, 44(2): 201-212.
金属合金相变材料 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 固态热导率/[W/(m·K)] |
---|---|---|---|---|
Mg-24.9Zn-5.1Al | 340 | 157.0 | 2 820 | 59 |
Zn-11.3Al | 382 | 118.0 | 6 752 | 133 |
Al-34Mg | 450 | 310.0 | 2 300 | 80 |
Al-33.2Cu | 548 | 351.0 | 3 424 | 130 |
Al-12Si | 576 | 560.0 | 2 700 | 160 |
Cu-20Si | 802 | 352.2 | — | 371 |
表1 金属合金相变材料的物性参数
Tab. 1 Physical properties of metal and alloy phase change materials
金属合金相变材料 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 固态热导率/[W/(m·K)] |
---|---|---|---|---|
Mg-24.9Zn-5.1Al | 340 | 157.0 | 2 820 | 59 |
Zn-11.3Al | 382 | 118.0 | 6 752 | 133 |
Al-34Mg | 450 | 310.0 | 2 300 | 80 |
Al-33.2Cu | 548 | 351.0 | 3 424 | 130 |
Al-12Si | 576 | 560.0 | 2 700 | 160 |
Cu-20Si | 802 | 352.2 | — | 371 |
熔盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
硝酸钠 | 310 | 174.0 | 2 260 | 0.50 |
氢氧化钾 | 380 | 149.7 | 2 044 | 0.50 |
溴化钠-55溴化镁 | 431 | 212.0 | 3 490 | 0.90 |
碳酸锂-53碳酸钾 | 488 | 342.0 | 2 200 | 1.99 |
氯化钠-67氯化钙 | 500 | 281.0 | 1 900 | 1.02 |
氟化钠-21氟化钾-62碳酸钾 | 520 | 274.0 | 2 380 | 1.50 |
表2 高温熔盐的物性参数
Tab. 2 Physical properties of high temperature molten salts
熔盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
硝酸钠 | 310 | 174.0 | 2 260 | 0.50 |
氢氧化钾 | 380 | 149.7 | 2 044 | 0.50 |
溴化钠-55溴化镁 | 431 | 212.0 | 3 490 | 0.90 |
碳酸锂-53碳酸钾 | 488 | 342.0 | 2 200 | 1.99 |
氯化钠-67氯化钙 | 500 | 281.0 | 1 900 | 1.02 |
氟化钠-21氟化钾-62碳酸钾 | 520 | 274.0 | 2 380 | 1.50 |
水合盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
二水合氟化钾 | 18.5 | 231 | 1 447 | — |
六水合氯化钙 | 29.5 | 170 | 1 680 | 1.088 |
十水合碳酸钠 | 34.0 | 251 | 1 440 | — |
十二水合磷酸氢二钠 | 36.5 | 264 | 1 520 | 0.514 |
三水合醋酸钠 | 58.0 | 265 | 1 450 | — |
六水合硝酸镁 | 90.0 | 160 | 1 460 | 0.669 |
六水合氯化镁 | 116.7 | 169 | 1 570 | 0.704 |
表3 水合盐的物性参数
Tab. 3 Physical properties of hydrated salts
水合盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
二水合氟化钾 | 18.5 | 231 | 1 447 | — |
六水合氯化钙 | 29.5 | 170 | 1 680 | 1.088 |
十水合碳酸钠 | 34.0 | 251 | 1 440 | — |
十二水合磷酸氢二钠 | 36.5 | 264 | 1 520 | 0.514 |
三水合醋酸钠 | 58.0 | 265 | 1 450 | — |
六水合硝酸镁 | 90.0 | 160 | 1 460 | 0.669 |
六水合氯化镁 | 116.7 | 169 | 1 570 | 0.704 |
导热填料 | 填料质量分数/% | 热导率/ [W/(m⋅K)] | 参考文献 |
---|---|---|---|
铜粉 | 9.68 | 0.513 | [ |
银纳米线 | 19.30 | 0.680 | [ |
碳纳米管 | 34.00 | 0.464 | [ |
氧化石墨烯(石墨烯) | 0.45(1.80) | 1.430 | [ |
氧化石墨烯(氮化硼) | 4.00(30.00) | 3.000 | [ |
多孔碳化土豆 | 14.64 | 4.489 | [ |
表4 导热增强PEG复合相变材料的相关数据
Tab. 4 Relevant data of thermally reinforced PEG composite phase change materials
导热填料 | 填料质量分数/% | 热导率/ [W/(m⋅K)] | 参考文献 |
---|---|---|---|
铜粉 | 9.68 | 0.513 | [ |
银纳米线 | 19.30 | 0.680 | [ |
碳纳米管 | 34.00 | 0.464 | [ |
氧化石墨烯(石墨烯) | 0.45(1.80) | 1.430 | [ |
氧化石墨烯(氮化硼) | 4.00(30.00) | 3.000 | [ |
多孔碳化土豆 | 14.64 | 4.489 | [ |
1 | 陈国平,董昱,梁志峰 .能源转型中的中国特色新能源高质量发展分析与思考[J].中国电机工程学报,2020,40(17):5493-5506. doi:10.13334/j.0258-8013.pcsee.200984 |
CHEN G P, DONG Y, LIANG Z F .Analysis and reflection on high-quality development of new energy with chinese characteristics in energy transition[J].Proceedings of the CSEE,2020,40(17):5493-5506. doi:10.13334/j.0258-8013.pcsee.200984 | |
2 | ZHANG D, WANG J, LIN Y,et al .Present situation and future prospect of renewable energy in China[J].Renewable and Sustainable Energy Reviews,2017,76:865-871. doi:10.1016/j.rser.2017.03.023 |
3 | 丁峰,李晓刚,梁泽琪,等 .国外可再生能源发展经验及其对我国相关扶持政策的启示[J].电力建设,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 |
DING F, LI X G, LIANG Z Q,et al .Review of foreign experience in promoting renewable energy development and inspiration to China[J].Electric Power Construction,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 | |
4 | 刘沅昆,张维静,张艳,等 .面向新型电力系统的新能源与储能联合规划方法[J].智慧电力,2022,50(10):1-8. doi:10.3969/j.issn.1673-7598.2022.10.002 |
LIU R K, ZHANG W J, ZHANG Y,et al .Joint planning method of renewable energy and energy storage for new-type power system[J].Smart Power,2022,50(10):1-8. doi:10.3969/j.issn.1673-7598.2022.10.002 | |
5 | 马锐,李相俊,李文启,等 .可再生能源供电区域电网中储能系统协同调度策略[J].发电技术,2021,42(1):31-39. doi:10.12096/j.2096-4528.pgt.20027 |
MA R, LI X J, LI W Q,et al .Cooperative scheduling strategy of energy storage systems for regional grid supplied by renewable energy[J].Power Generation Technology,2021,42(1):31-39. doi:10.12096/j.2096-4528.pgt.20027 | |
6 | YUAN K, SHI J, AFTAB W,et al .Engineering the thermal conductivity of functional phase-change materials for heat energy conversion,storage,and utilization[J].Advanced Functional Materials,2019,30(8):1-31. doi:10.1002/adfm.201904228 |
7 | 和萍,宫智杰,靳浩然,等 .高比例可再生能源电力系统调峰问题综述[J].电力建设,2022,43(11):108-121. doi:10.12204/j.issn.1000-7229.2022.11.011 |
HE P, GONG Z J, JIN H R,et al .Review of peak-shaving problem of electric power system with high proportion of renewable energy[J].Electric Power Construction,2022,43(11):108-121. doi:10.12204/j.issn.1000-7229.2022.11.011 | |
8 | OLABI A G .Renewable energy and energy storage systems[J].Energy,2017,136:1-6. doi:10.1016/j.energy.2017.07.054 |
9 | 李昭,李宝让,陈豪志,等 .相变储热技术研究进展[J].化工进展,2020,39(12):5066-5085. |
LI Z, LI B R, CHEN H Z,et al .State of the art review on phase change thermal energy storage technology[J].Chemical Industry and Engineering Progress,2020,39(12):5066-5085. | |
10 | 王泽旭,李冰辰,许瑶,等 .基于过冷相变材料热开关的锂离子电池热管理系统[J].发电技术,2022,43(2):328-340. doi:10.12096/j.2096-4528.pgt.21058 |
WANG Z X, LI B C, XU Y,et al .Lithium-ion battery thermal management system based on the combination of supercooled phase change material and thermal switch[J].Power Generation Technology,2022,43(2):328-340. doi:10.12096/j.2096-4528.pgt.21058 | |
11 | GRACIA A, CABEZA L F .Phase change materials and thermal energy storage for buildings[J].Energy and Buildings,2015,103:414-419. doi:10.1016/j.enbuild.2015.06.007 |
12 | MIRÓ L, GASIA J, CABEZA L F .Thermal energy storage (TES) for industrial waste heat (IWH) recovery:a review[J].Applied Energy,2016,179:284-301. doi:10.1016/j.apenergy.2016.06.147 |
13 | MOFIJUR M, MAHLIA T, SILITONGA A,et al .Phase change materials (PCM) for solar energy usages and storage:an overview[J].Energies,2019,12(16):3167. doi:10.3390/en12163167 |
14 | 刘霞,匡勇,钱振,等 .电池热管理用相变储能材料的研究进展[J].储能科学与技术,2015,4(4):365-373. doi:10.3969/j.issn.2095-4239.2015.04.004 |
LIU X, KUANG Y, QIAN Z,et al .Review on phase change materials based battery thermal management technology[J].Energy Storage Science and Technology,2015,4(4):365-373. doi:10.3969/j.issn.2095-4239.2015.04.004 | |
15 | 李滨红,赵天宇 .相变储热技术用于被动式建筑节能的研究进展[J].中国住宅设施,2020(10):113-114. |
LI B H, ZHAO T Y .Research progress of phase change heat storage technology for energy saving in passive buildings[J].China Housing Facilities,2020(10):113-114. | |
16 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J,et al .Recent developments in phase change materials for energy storage applications:a review[J].International Journal of Heat and Mass Transfer,2019,129:491-523. doi:10.1016/j.ijheatmasstransfer.2018.09.126 |
17 | XU B, LI P, CHAN C .Application of phase change materials for thermal energy storage in concentrated solar thermal power plants:a review to recent developments[J].Applied Energy,2015,160:286-307. doi:10.1016/j.apenergy.2015.09.016 |
18 | 廖志荣,李朋达,田紫芊,等 .非均匀翅片对级联相变储热系统热性能强化的研究[J].发电技术,2022,43(1):83-91. doi:10.12096/j.2096-4528.pgt.20114 |
LIAO Z R, LI P D, TIAN Z Q,et al .Heat Transfer enhancement of a cascaded latent heat thermal energy storage system by fins with different uneven layouts[J].Power Generation Technology,2022,43(1):83-91. doi:10.12096/j.2096-4528.pgt.20114 | |
19 | UMAIR M M, ZHANG Y, IQBAL K,et al .Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage:a review[J].Applied Energy,2019,235:846-873. doi:10.1016/j.apenergy.2018.11.017 |
20 | WEI G, WANG G, XU C,et al .Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage:a review[J].Renewable and Sustainable Energy Reviews,2018,81:1771-1786. doi:10.1016/j.rser.2017.05.271 |
21 | 孙正,程晓敏,朱教群,等 .Mg基高温相变储热共晶合金熔化相变焓的研究[J].功能材料,2017,48(2):2236-2240. doi:10.3969/j.issn.1001-9731.2017.02.045 |
SUN Z, CHENG X M, ZHU J Q,et al .Study on enthalpy of melting phase transition of Mg-based eutectic alloys at high temperature[J].Journal of Functional Materials,2017,48(2):2236-2240. doi:10.3969/j.issn.1001-9731.2017.02.045 | |
22 | LIN Y, ALVA G, FANG G .Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J].Energy,2018,165:685-708. doi:10.1016/j.energy.2018.09.128 |
23 | QIN Y, LENG G H, YU X,et al .Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J].Powder Technology,2015,282:37-42. doi:10.1016/j.powtec.2014.08.075 |
24 | DENG Y, LI J, QIAN T,et al .Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J].Journal of Materials Science & Technology,2017,33(2):198-203. doi:10.1016/j.jmst.2016.02.011 |
25 | LIU M, GOMEZ J C, TURCHI C S,et al .Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications[J].Solar Energy Materials and Solar Cells,2015,139:81-87. doi:10.1016/j.solmat.2015.03.014 |
26 | 周园,李翔,海春喜,等 .水合盐相变储能材料研究[J].盐湖研究,2018,26(2):9-15. |
ZHOU Y, LI X, HAI C X,et al .Research on hydrated salt phase change energy storage materials[J].Journal of Salt Lake Research,2018,26(2):9-15. | |
27 | TANG Y R, GAO D L, GUO Y F,et al .Supercooling and phase separation of inorganic salt hydrates as PCMs[J].Applied Mechanics and Materials,2011,71/78:2602-2605. doi:10.4028/www.scientific.net/amm.71-78.2602 |
28 | SHANG B, HU J, HU R,et al .Modularized thermal storage unit of metal foam/paraffin composite[J].International Journal of Heat and Mass Transfer,2018,125:596-603. doi:10.1016/j.ijheatmasstransfer.2018.04.117 |
29 | LUO D J, WEI F J, SHAO H J,et al .Shape stabilization,thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials[J].Journal of Materials Science,2018,53(22):15500-15513. doi:10.1007/s10853-018-2722-5 |
30 | YUAN Y, ZHANG N, TAO W,et al .Fatty acids as phase change materials:a review[J].Renewable and Sustainable Energy Reviews,2014,29:482-498. doi:10.1016/j.rser.2013.08.107 |
31 | FU X, ZHANG Y, KONG W,et al .Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage[J].Journal of Thermal Analysis and Calorimetry,2016,128(2):643-651. doi:10.1007/s10973-016-5959-8 |
32 | 张俊博,金旭,刘忠彦,等 .吸收式热泵余热回收先进技术综述[J].发电技术,2020,41(3):269-280. doi:10.12096/j.2096-4528.pgt.19170 |
ZHANG J B, JIN X, LIU Z Y,et al .Review on advanced technology for waste heat recovery of absorption heat pump[J].Power Generation Technology,2020,41(3):269-280. doi:10.12096/j.2096-4528.pgt.19170 | |
33 | MAGRO F, SAVINO S, MENEGHETTI A,et al .Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry[J].Energy,2017,137:1107-1118. doi:10.1016/j.energy.2017.04.051 |
34 | 郭璞维,彭跃,邓靖敏,等 .烟气余热回收与储能技术耦合应用的可行性研究[J].华电技术,2021,43(9):62-68. doi:10.3969/j.issn.1674-1951.2021.09.008 |
GUO P W, PENG Y, DENG J M,et al .Feasibility study on coupling application of flue gas waste heat recovery and energy storage technology[J].Huadian Technology,2021,43(9):62-68. doi:10.3969/j.issn.1674-1951.2021.09.008 | |
35 | XU H, ROMAGNOLI A, SZE J Y,et al .Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery[J].Applied Energy,2017,187:281-290. doi:10.1016/j.apenergy.2016.11.070 |
36 | 魏高升,邢丽婧,杜小泽,等 .太阳能热发电系统相变储热材料选择及研发现状 [J].中国电机工程学报,2014,34(3):325-335. |
WEI G S, XING L J, DU X Z,et al .Research status and selection of phase change thermal energy storage materials for CSP systems[J].Proceedings of the CSEE,2014,34(3):325-335. | |
37 | MAHFUZ M H, KAMYAR A, AFSHAR O,et al .Exergetic analysis of a solar thermal power system with PCM storage[J].Energy Conversion and Management,2014,78:486-492. doi:10.1016/j.enconman.2013.11.016 |
38 | SHEN J, ZHU Y, YANG X,et al .One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[J].New Journal of Chemistry,2012,36(1):97-101. doi:10.1039/c1nj20658c |
39 | YANG J, TANG L S, BAO R Y,et al .Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets[J].Chemical Engineering Journal,2017,315:481-490. doi:10.1016/j.cej.2017.01.045 |
40 | LI M, WANG C .Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials[J].Renewable Energy,2019,141:1005-1012. doi:10.1016/j.renene.2019.03.141 |
41 | 李勇琦,郑耀东,董缇,等 .退役锂离子动力电池储能系统风冷热管理仿真[J].电力系统保护与控制,2021,49(12):8-15. |
LI Y Q, ZHENG Y D, DONG T,et al .Wind cooling heat management simulation of a retired lithium ion battery energy storage system[J].Power System Protection and Control,2021,49(12):8-15. | |
42 | 李泽群,杨建国 .石墨/石蜡相变材料在电池热管理中的应用 [J].电源技术,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 |
LI Z Q, YANG J G .Application of graphite/paraffin phase change materials in thermal management of batteries[J].Chinese Journal of Power Sources,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 | |
43 | HEYHAT M M, MOUSAVI S, SIAVASHI M .Battery thermal management with thermal energy storage composites of PCM,metal foam,fin and nanoparticle[J].Journal of Energy Storage,2020,28:1-14. doi:10.1016/j.est.2020.101235 |
44 | JAVANI N, DINCER I, NATERER G F,et al .Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J].International Journal of Heat and Mass Transfer,2014,72:690-703. doi:10.1016/j.ijheatmasstransfer.2013.12.076 |
45 | WU W, YANG X, ZHANG G,et al .Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J].Energy Conversion and Management,2017,138:486-92. doi:10.1016/j.enconman.2017.02.022 |
46 | 张燕 .中国建筑节能潜力及政策体系研究[D].北京:北京理工大学,2015. |
ZHANG Y .Researh on potential and policy system of building energy efficiency in China[D].Beijing:Beijing Insitute of Technology,2015. | |
47 | ZHANG Y P, LIN K P, YANG R,et al .Preparation,thermal performance and application of shape-stabilized PCM in energy efficient buildings[J].Energy and Buildings,2006,38(10):1262-1269. doi:10.1016/j.enbuild.2006.02.009 |
48 | XU T, CHEN Q, ZHANG Z,et al .Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material[J].Building and Environment,2016,104:172-177. doi:10.1016/j.buildenv.2016.05.003 |
49 | ZHANG X G, WEN R L, TANG C,et al .Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application[J].Energy and Buildings,2016,130:113-121. doi:10.1016/j.enbuild.2016.08.049 |
50 | 孙晓阳 .脂肪酸-脂肪醇/膨胀珍珠岩复合相变建筑储热材料的制备及性能研究[D].西安:西安建筑科技大学,2020. |
SUN X Y .Preparation and properties of fatty acid-fatty alcohol/expanded perlite composite phase change building heat storage materials[D].Xi’an:Xi’an University of Architecture and Technology,2020. | |
51 | DU Y, LIU P, QUAN X,et al .Characterization and cooling effect of a novel cement-based composite phase change material[J].Solar Energy,2020,208:573-582. doi:10.1016/j.solener.2020.07.083 |
52 | FARRELL A J, NORTON B, KENNEDY D M .Corrosive effects of salt hydrate phase change materials used with aluminium and copper[J].Journal of Materials Processing Technology,2006,175(1/3):198-205. doi:10.1016/j.jmatprotec.2005.04.058 |
53 | SUNDARARAJAN S, SAMUI A B, KULKARNI P S .Shape-stabilized poly (ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending[J].Solar Energy,2017,144:32-39. doi:10.1016/j.solener.2016.12.056 |
54 | WU B, JIANG Y, WANG Y,et al .Study on a PEG/epoxy shape-stabilized phase change material:Preparation,thermal properties and thermal storage performance[J].International Journal of Heat and Mass Transfer,2018,126:1134-1142. doi:10.1016/j.ijheatmasstransfer.2018.05.153 |
55 | ALKAN C, SARI A, UZUN O .Poly (ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage[J].AIChE Journal,2006,52(9):3310-3314. doi:10.1002/aic.10928 |
56 | ZHANG L, ZHU J, ZHOU W,et al .Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method[J].Thermochimica Acta,2011,524(1/2):128-134. doi:10.1016/j.tca.2011.07.003 |
57 | SHEN J, ZHANG P, SONG L,et al .Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material[J].Composites Part B:Engineering,2019,179:1-10. doi:10.1016/j.compositesb.2019.107545 |
58 | TANG L S, YANG J, BAO R Y,et al .Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide[J].Energy Conversion and Management,2017,146:253-264. doi:10.1016/j.enconman.2017.05.037 |
59 | LIU Z, TANG B, ZHANG S .Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy[J].Solar Energy Materials and Solar Cells,2020,216:1-7. doi:10.1016/j.solmat.2020.110678 |
60 | QURESHI Z A, ALI H M, KHUSHNOOD S .Recent advances on thermal conductivity enhancement of phase change materials for energy storage system:a review[J].International Journal of Heat and Mass Transfer,2018,127:838-856. doi:10.1016/j.ijheatmasstransfer.2018.08.049 |
61 | ZHANG X, HUANG Z, MA B,et al .Polyethylene glycol/Cu/SiO2 form stable composite phase change materials:preparation,characterization,and thermal conductivity enhancement[J].RSC Advances,2016,6(63):58740-58748. doi:10.1039/c6ra12890d |
62 | DENG Y, LI J, QIAN T,et al .Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J].Chemical Engineering Journal,2016,295:427-435. doi:10.1016/j.cej.2016.03.068 |
63 | WANG J, HUANG X, GAO H,et al .Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J].Chemical Engineering Journal,2018,350:164-172. doi:10.1016/j.cej.2018.05.190 |
64 | YANG J, QI G-Q, LIU Y,et al .Hybrid graphene aerogels/phase change material composites:thermal conductivity,shape-stabilization and light-to-thermal energy storage[J].Carbon,2016,100:693-702. doi:10.1016/j.carbon.2016.01.063 |
65 | YANG J, TANG L S, BAO R Y,et al .Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability[J].Solar Energy Materials and Solar Cells,2018,174:56-64. doi:10.1016/j.solmat.2017.08.025 |
66 | ZHAO Y, MIN X, HUANG Z,et al .Honeycomb-like structured biological porous carbon encapsulating PEG:a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage[J].Energy and Buildings,2018,158:1049-1062. doi:10.1016/j.enbuild.2017.10.078 |
67 | MORENO P, MIRÓ L, SOLÉ A,et al .Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications[J].Applied Energy,2014,125:238-245. doi:10.1016/j.apenergy.2014.03.022 |
68 | 孟令然,郭立江,李晓禹,等 .水合盐相变储能材料的研究进展[J].储能科学与技术,2017,6(4):623-632. |
MENG L R, GUO L J, LI X Y,et al .Salt hydrate based phase change materials for thermal energy storage:a review[J].Energy Storage Science and Technology,2017,6(4):623-632. | |
69 | 李玉婷,周永全,葛飞,等 .无机水合盐相变储能材料的过冷及相分离研究进展[J].盐湖研究,2018,26(1):81-86. |
LI Y T, ZHOU Y Q, GE F,et al .Research progress on undercooling and phase separation of inorganic hydrated salt phase change energy storage materials[J].Journal of Salt Lake Research,2018,26(1):81-86. | |
70 | SARVGHAD M, WILL G, STEINBERG T A .Corrosion of Inconel 601 in molten salts for thermal energy storage[J].Solar Energy Materials and Solar Cells,2017,172:220-229. doi:10.1016/j.solmat.2017.07.036 |
71 | 丁祥彬,孙华,俞国军,等 .Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J].中国腐蚀与防护学报,2015,35(6):543-548. |
DING X B, SUN H, YU G J,et al .Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF[J].Journal of Chinese Society for Corrosion and Protection,2015,35(6):543-548. | |
72 | 赵峥峥,王遥,刘斌,等 .三元混合氯化盐NaCl-KCl-MgCl2对合金的腐蚀特性实验研究[J].发电技术,2018,39(6):561-565. doi:10.12096/j.2096-4528.pgt.18221 |
ZHAO Z Z, WANG Y, LIU B,et al .Experimental study on corrosion characteristics of ternary mixed chloride salt NaCl-KCl-MgCl2 [J].Power Generation Technology,2018,39(6):561-565. doi:10.12096/j.2096-4528.pgt.18221 |
[1] | 周丹, 袁至, 李骥, 范玮. 考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J]. 发电技术, 2024, 45(3): 412-422. |
[2] | 赵斌, 梁告, 姜孟浩, 邹港, 王力. 光储系统并网功率波动平抑及储能优化配置[J]. 发电技术, 2024, 45(3): 423-433. |
[3] | 李军徽, 陈国航, 马腾, 李翠萍, 朱星旭, 贾晨. 高风电渗透率下液流电池储能系统调峰优化控制策略[J]. 发电技术, 2024, 45(3): 434-447. |
[4] | 韩秀秀, 魏少鑫, 汪剑, 崔超婕, 骞伟中. 高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析[J]. 发电技术, 2024, 45(3): 494-507. |
[5] | 刘洪波, 刘永发, 任阳, 孙黎, 刘珅诚. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, 45(2): 260-272. |
[6] | 高德扬, 蒋中一, 张锴, 孟境辉. 基于相变材料的半导体热电发电器性能优化研究[J]. 发电技术, 2023, 44(6): 842-849. |
[7] | 陈志华, 尤梦凯, 蔡伟, 胡经伟, 胡兴, 张爱芳, 张科杰, 王伟. 考虑全寿命周期的储能电站综合评价模型[J]. 发电技术, 2023, 44(6): 883-888. |
[8] | 石梦舒, 许小峰, 张继广, 李忆, 周保中, 乐鹰, 毕圣. 考虑电-氢市场的虚拟电厂两阶段优化策略研究[J]. 发电技术, 2023, 44(5): 645-655. |
[9] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[10] | 叶珍珍, 陈鑫祺, 张抒婷, 汪剑, 崔超婕, 张刚, 张磊, 钱陆明, 金鹰, 骞伟中. 离子液体型双电层电容器在45 ℃和3 V状态下的长周期运行研究[J]. 发电技术, 2023, 44(2): 213-220. |
[11] | Mohamed ABD-HAMID, 夏龙禹, 魏高升, 崔柳, 徐超, 杜小泽. 集成相变储热材料的光伏/热复合系统性能分析[J]. 发电技术, 2023, 44(1): 53-62. |
[12] | 郝艺博, 杜锡力, 李笑竹, 陈来军. 考虑储能性能差异的新能源场站群共享储能交易模式[J]. 发电技术, 2022, 43(5): 687-697. |
[13] | 谷晴, 李睿, 蔡旭, 谢宝昌. 面向百兆瓦级应用的电池储能系统拓扑与控制方法[J]. 发电技术, 2022, 43(5): 698-706. |
[14] | 霍龙, 张誉宝, 陈欣. 人工智能在分布式储能技术中的应用[J]. 发电技术, 2022, 43(5): 707-717. |
[15] | 陈晓光, 杨秀媛, 王镇林, 王浩扬. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||