发电技术 ›› 2024, Vol. 45 ›› Issue (2): 260-272.DOI: 10.12096/j.2096-4528.pgt.22128
刘洪波, 刘永发, 任阳, 孙黎, 刘珅诚
收稿日期:
2023-07-21
出版日期:
2024-04-30
发布日期:
2024-04-29
作者简介:
基金资助:
Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU
Received:
2023-07-21
Published:
2024-04-30
Online:
2024-04-29
Supported by:
摘要:
风电的高比例渗透削弱了电力系统的惯性与调频容量,储能凭借响应迅速、出力稳定等特点被广泛应用于电网的惯量支撑及频率调节工作。首先以双馈风机额定转速与有功出力为约束条件,基于转子超速控制设置最适功率预留系数,划分风机参与系统调频的风速范围。在此基础上,考虑系统频率支撑能力,提出一种风电机组与储能协调配合的调频方法。通过对储能有功出力与系统稳态恢复过程的分析,刻画了虚拟同步机控制策略下储能系统的动态频率调节特性,由此实现储能在应对系统不同工况与不同支撑需求下控制参数的最优配置。仿真结果表明,所提方法能够在保证系统调频需求的同时充分利用风电自身的调频容量,优化储能系统参数的配置结果,实现储能出力的平滑输出,提高系统的频率支撑能力。
中图分类号:
刘洪波, 刘永发, 任阳, 孙黎, 刘珅诚. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, 45(2): 260-272.
Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU. Energy Storage Configuration Considering the System Wind Power Reserve Capacity Under High Wind Power Permeability[J]. Power Generation Technology, 2024, 45(2): 260-272.
运行 工况 | 最大不平衡功率Δ Psysm/MW | 功率波动 Δ P/MW | 风速范围 v/(m/s) |
---|---|---|---|
工况1 | Δ PG | Δ P<Δ Psysm1 | 任意风速 |
工况2 | Δ PG+Δ PESS | Δ Psysm1<Δ P<Δ Psysm2 | v>11、 v<7 |
工况3 | Δ PG+Δ Pwind | Δ Psysm1<Δ P<Δ Psysm3 | 7< v<11 |
工况4 | Δ PG+Δ Pwind+Δ PESS | Δ Psysm3<Δ P<Δ Psysm4 | 7< v<11 |
表1 系统不同工况划分条件
Tab. 1 Different working conditions of the system
运行 工况 | 最大不平衡功率Δ Psysm/MW | 功率波动 Δ P/MW | 风速范围 v/(m/s) |
---|---|---|---|
工况1 | Δ PG | Δ P<Δ Psysm1 | 任意风速 |
工况2 | Δ PG+Δ PESS | Δ Psysm1<Δ P<Δ Psysm2 | v>11、 v<7 |
工况3 | Δ PG+Δ Pwind | Δ Psysm1<Δ P<Δ Psysm3 | 7< v<11 |
工况4 | Δ PG+Δ Pwind+Δ PESS | Δ Psysm3<Δ P<Δ Psysm4 | 7< v<11 |
1 | 王松岑, 来小康, 程时杰 . 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37( 1): 3- 8. |
WANG S C, LAI X K, CHENG S J . An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power System, 2013, 37( 1): 3- 8. | |
2 | 唐西胜, 苗福丰, 齐智平, 等 . 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34( 25): 4304- 4314. |
TANG X S, MIAO F F, QI Z P, et al . Survey on frequency control of wind power[J]. Proceedings of the CSEE, 2014, 34( 25): 4304- 4314. | |
3 | 马锐, 李相俊, 李文启, 等 . 可再生能源供电区域电网中储能系统协同调度策略[J]. 发电技术, 2021, 42( 1): 31- 39. doi: 10.12096/j.2096-4528.pgt.20027 |
MA R, LI X J, LI W Q, et al . Cooperative scheduling strategy of energy storage systems for regional grid supplied by renewable energy[J]. Power Generation Technology, 2021, 42( 1): 31- 39. doi: 10.12096/j.2096-4528.pgt.20027 | |
4 | 康思伟, 董文凯, 郭诗然, 等 . 基于虚拟同步机控制的新能源发电并网系统小干扰稳定临界短路比[J]. 电力建设, 2022, 43( 3): 131- 140. |
KANG S W, DONG W K, GUO S R, et al . Critical short-circuit ratio of small-signal stability for a grid-connected renewable power generation system based on virtual synchronous generator control[J]. Electric Power Construction, 2022, 43( 3): 131- 140. | |
5 | 刘吉臻, 姚琦, 柳玉, 等 . 风火联合调度的风电场一次调频控制策略研究[J]. 中国电机工程学报, 2017, 37( 12): 3462- 3469. |
LIU J Z, YAO Q, LIU Y, et al . Wind farm primary frequency control strategy based on wind & thermal power joint control[J]. Proceedings of the CSEE, 2017, 37( 12): 3462- 3469. | |
6 | 陈晓光, 杨秀媛, 王镇林, 等 . 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43( 5): 718- 730. doi: 10.12096/j.2096-4528.pgt.22020 |
CHEN X G, YANG X Y, WANG Z L, et al . Energy storage capacity allocation scheme of wind farm considering multi-objective optimization model[J]. Power Generation Technology, 2022, 43( 5): 718- 730. doi: 10.12096/j.2096-4528.pgt.22020 | |
7 | WU Y K, LU G L, QUOC D P . A review of frequency regulation of DFIG-based wind farms[C]// The 11th IET International Conference on Advances in Power System Control,Operation and Management (APSCOM 2018). Hong Kong: IET, 2018: 1- 5. doi: 10.1049/cp.2018.1766 |
8 | 王同森, 程雪坤 . 计及转速限值的双馈风机变下垂系数控制策略[J]. 电力系统保护与控制, 2021, 49( 9): 29- 36. |
WANG T S, CHENG X K . Variable droop coefficient control strategy of a DFIG considering rotor speed limit[J]. Power System Protection and Control, 2021, 49( 9): 29- 36. | |
9 | 李永刚, 贺梦娟, 刘静利, 等 . 考虑风速影响的双馈风机调频建模及稳定性分析[J]. 电力系统及其自动化学报, 2022, 34( 9): 110- 120. |
LI Y G, HE M J, LIU J L, et al . Frequency modulation modeling and stability analysis of DFIG-based wind turbines considering the influence of wind speed[J]. Proceedings of the CSU-EPSA, 2022, 34( 9): 110- 120. | |
10 | 穆钢, 蔡婷婷, 严干贵, 等 . 双馈风电机组参与持续调频的双向功率约束及其影响[J]. 电工技术学报, 2019, 34( 8): 1750- 1759. |
MU G, CAI T T, YAN G G, et al . Bidirectional power constraints and influence of doubly fed induction generator participating in continuous frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34( 8): 1750- 1759. | |
11 | TANG X S, YIN M H, SHEN C, et al . Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation[J]. IEEE Transactions Sustainable Energy, 2019, 10( 2): 822- 832. doi: 10.1109/tste.2018.2848923 |
12 | 张三洪, 党杰, 戴剑丰, 等 . 考虑最优转速与桨距角控制的风电场限功率优化控制策略[J]. 电网技术, 2021, 45( 5): 1844- 1851. |
ZHANG S H, DANG J, DAI J F . Optimal control strategy for wind power curtailment considering optimal speed and pitch angle control[J]. Power System Technology, 2021, 45( 5): 1844- 1851. | |
13 | GALLO A B, SIMOSES-MOREIRA J R, COSTA H K M, et al . Energy storage in the energy transition context:a technology review[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 800- 822. doi: 10.1016/j.rser.2016.07.028 |
14 | STEFANO M, PAOLA P, FEDERICO S, et al . Siting and sizing of energy storage systems:towards a unified approach for transmission and distribution system operators for reserve provision and grid support[J]. Electric Power Systems Research, 2021, 190. doi: 10.1016/j.epsr.2020.106660 |
15 | 闫群民, 穆佳豪, 马永翔, 等 . 分布式储能应用模式及优化配置综述[J]. 电力工程技术, 2022, 41( 2): 67- 74. doi: 10.12158/j.2096-3203.2022.02.009 |
YAN Q M, MU J H, MA Y X, et al . Review of distributed energy storage application mode and optimal configuration[J]. Electric Power Engineering Technology, 2022, 41( 2): 67- 74. doi: 10.12158/j.2096-3203.2022.02.009 | |
16 | 齐军, 陈磊, 闵勇, 等 . 虚拟惯量控制响应延时对控制效果的影响分析[J]. 智慧电力, 2022, 50( 6): 1- 7. doi: 10.3969/j.issn.1673-7598.2022.06.002 |
QI J, CHEN L, MIN Y, et al . Influence of virtual inertia control response delay on control effect[J]. Smart Power, 2022, 50( 6): 1- 7. doi: 10.3969/j.issn.1673-7598.2022.06.002 | |
17 | 袁敞, 王俊杰, 胡嘉琦, 等 . 平衡频率与功率振荡的虚拟同步机惯量阻尼参数优化控制[J]. 电力科学与技术学报, 2023, 38( 4): 15- 23. |
YUAN C, WANG J J, HU J Q, et al . Optimal control of inertia damping parameters of virtual synchronous machine with balance frequency and power oscillation[J]. Journal of Electric Power Science and Technology, 2023, 38( 4): 15- 23. | |
18 | 秦晓辉, 苏丽宁, 迟永宁, 等 . 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析[J]. 电力系统自动化, 2018, 42( 9): 36- 43. doi: 10.7500/AEPS20171122007 |
QIN X H, SU L N, CHI Y N, et al . Functional orientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid[J]. Automation of Electric Power System, 2018, 42( 9): 36- 43. doi: 10.7500/AEPS20171122007 | |
19 | 刘闯, 孙同, 蔡国伟, 等 . 基于同步机三阶模型的电池储能电站主动支撑控制及其一次调频贡献力分析[J]. 中国电机工程学报, 2020, 40( 15): 4854- 4866. |
LIU C, SUN T, CAI G W, et al . Third-order synchronous machine model based active support control of battery storage power plant and its contribution analysis for primary frequency response[J]. Proceedings of the CSEE, 2020, 40( 15): 4854- 4866. | |
20 | TORRES L M A, LOPES L A C, MORAN T L A, et al . Self-tuning virtual synchronous machine:a control strategy for energy storage systems to support dynamic frequency control[J]. IEEE Transactions on Energy Conversion, 2014, 29( 4): 833- 840. doi: 10.1109/tec.2014.2362577 |
21 | 杨帆, 邵银龙, 李东东, 等 . 一种计及储能容量和SOC约束的模糊自适应VSG控制策略[J]. 电网技术, 2021, 45( 5): 1869- 1877. |
YANG F, SHAO Y L, LI D D, et al . Fuzzy adaptive vsg control strategy considering energy storage capacity and SOC constraint[J]. Power System Technology, 2021, 45( 5): 1869- 1877. | |
22 | 姜惠兰, 蔡继朝, 肖瑞, 等 . 一种提高系统频率响应特性的风储协调控制策略[J]. 电力自动化设备, 2021, 41( 7): 44- 51. |
JIANG H L, CAI J C, XIAO R, et al . A wind-storage coordinated control strategy for improving system frequency response characteristics[J]. Electric Power Automation Equipment, 2021, 41( 7): 44- 51. | |
23 | 赵晶晶, 李敏, 何欣芹, 等 . 基于限转矩控制的风储联合调频控制策略[J]. 电工技术学报, 2019, 34( 23): 4982- 4990. |
ZHAO J J, LI M, HE X Q, et al . Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34( 23): 4982- 4990. | |
24 | 苗福丰, 唐西胜, 齐智平 . 风储联合调频下的电力系统频率特性分析[J]. 高电压技术, 2015, 41( 7): 2209- 2216. |
MIAO F F, TANG X S, QI Z P . Analysis of frequency characteristics of power system based on wind farm-energy storage combined frequency regulation[J]. High Voltage Engineering, 2015, 41( 7): 2209- 2216. | |
25 | 颜湘武, 王德胜, 隗小雪, 等 . 风电机组故障穿越与频率调节风储联合控制策略研究[J]. 中国电机工程学报, 2021, 41( 17): 5911- 5923. doi: 10.13334/j.0258-8013.pcsee.201129 |
YAN X W, WANG D S, WEI X X, et al . Research on the wind power-storage joint control based on fault ride-through and frequency regulation of wind turbine[J]. Proceedings of the CSEE, 2021, 41( 17): 5911- 5923. doi: 10.13334/j.0258-8013.pcsee.201129 | |
26 | DANG J, SEUSS J, SUNEJA L, et al . SoC feedback control for wind and ess hybrid power system frequency regulation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2( 1): 79- 86. doi: 10.1109/jestpe.2013.2289991 |
27 | LIU H B, ZHANG C, PENG X Y, et al . Configuration of an energy storage system for primary frequency reserve and inertia response of the power grid[J]. IEEE Access, 2021, 9: 41965- 41975. doi: 10.1109/access.2021.3065728 |
28 | 朱瑛, 秦立宽, 颜全椿, 等 . 考虑频率响应过程的风储联合调频策略及储能系统优化配置方法[J]. 电力自动化设备, 2021, 41( 10): 28- 35. |
ZHU Y, QIN L K, YAN Q C, et al . Wind-storage combined frequency regulation strategy and optimal configuration method of energy storage system considering process of frequency response[J]. Electric Power Automation Equipment, 2021, 41( 10): 28- 35. | |
29 | 张崇 . 基于可再生能源高占比系统频率响应需求的储能配置研究[D]. 吉林: 东北电力大学, 2022. |
ZHANG C . Research on the energy storage system configuration based on the frequency response of high renewable energy sources proportion system[D]. Jilin: Northeast Electric Power University, 2022. |
[1] | 周丹, 袁至, 李骥, 范玮. 考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J]. 发电技术, 2024, 45(3): 412-422. |
[2] | 赵斌, 梁告, 姜孟浩, 邹港, 王力. 光储系统并网功率波动平抑及储能优化配置[J]. 发电技术, 2024, 45(3): 423-433. |
[3] | 邵宜祥, 刘剑, 胡丽萍, 过亮, 方渊, 李睿. 一种改进组合神经网络的超短期风速预测方法研究[J]. 发电技术, 2024, 45(2): 323-330. |
[4] | 石梦舒, 许小峰, 张继广, 李忆, 周保中, 乐鹰, 毕圣. 考虑电-氢市场的虚拟电厂两阶段优化策略研究[J]. 发电技术, 2023, 44(5): 645-655. |
[5] | 谷晴, 李睿, 蔡旭, 谢宝昌. 面向百兆瓦级应用的电池储能系统拓扑与控制方法[J]. 发电技术, 2022, 43(5): 698-706. |
[6] | 陈晓光, 杨秀媛, 卜思齐, 徐智蔷. 考虑经济功能性的风电场储能系统容量配置[J]. 发电技术, 2022, 43(2): 341-352. |
[7] | 马锐, 李相俊, 李文启, 高冬学, 张景超, 宋宁希. 可再生能源供电区域电网中储能系统协同调度策略[J]. 发电技术, 2021, 42(1): 31-39. |
[8] | 黄树帮, 陈耀, 金宇清. 碳中和背景下多通道特征组合超短期风电功率预测[J]. 发电技术, 2021, 42(1): 60-68. |
[9] | 郭亦宗, 郭创新. 基于虚拟同步发电机的微电网并离网安全控制策略[J]. 发电技术, 2020, 41(6): 650-658. |
[10] | 宋学伟, 刘玉瑶. 基于改进K-means聚类的风光发电场景划分[J]. 发电技术, 2020, 41(6): 625-630. |
[11] | 朱月,沙俊民,赵静. 含不同机组风电场低电压穿越能力仿真研究[J]. 发电技术, 2020, 41(3): 328-333. |
[12] | 杨湛晔,王佳楠,张虎润. “互联网+”智慧能源储能系统主动调控策略研究[J]. 发电技术, 2020, 41(3): 281-287. |
[13] | 匡生,王蓓蓓. 考虑储能寿命和参与调频服务的风储联合运行优化策略[J]. 发电技术, 2020, 41(1): 73-78. |
[14] | 范丽霞,蔡瑞强,张欢畅,魏远,田恬,胡斌. 电压型虚拟同步发电机控制策略下的双馈风电机组阻抗及次同步振荡特性[J]. 发电技术, 2019, 40(5): 434-439. |
[15] | 李相俊,许格健. 基于长短期记忆神经网络的风力发电功率预测方法[J]. 发电技术, 2019, 40(5): 426-433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||