发电技术 ›› 2021, Vol. 42 ›› Issue (2): 180-192.DOI: 10.12096/j.2096-4528.pgt.20022
贺瑜环1(), 杨秀媛1,*(
), 陈麒宇2(
), 卜思齐3(
), 徐智蔷4(
), 肖天颖5,6(
)
收稿日期:
2020-04-09
出版日期:
2021-04-30
发布日期:
2021-04-29
通讯作者:
杨秀媛
作者简介:
贺瑜环(1995), 女, 硕士研究生, 研究方向为控制理论与控制工程及新能源发电, 910169459@qq.com基金资助:
Yuhuan HE1(), Xiuyuan YANG1,*(
), Qiyu CHEN2(
), Siqi BU3(
), Zhiqiang XU4(
), Tianying XIAO5,6(
)
Received:
2020-04-09
Published:
2021-04-30
Online:
2021-04-29
Contact:
Xiuyuan YANG
Supported by:
摘要:
随着电动汽车规模的增大,电动汽车接入电网对电力系统运行与控制的影响不容忽视。电动汽车作为一种可控负荷,对其进行充放电控制可以有效削弱充电负荷带来的不利影响,同时还能起到削峰填谷、促进新能源消纳的作用,这将成为电力系统运行控制的一种重要手段。给出了充电负荷建模需要考虑的因素,总结了建立电动汽车负荷预测模型的方法。归纳了电动汽车参与电网调度的可行方法,并分析了不同方法的特点。同时,为了提高电动汽车参与调度的积极性,介绍了用区块链完成电动汽车电力交易的架构与方法。最后,对尚未解决的问题和可能的研究方向进行了讨论。
中图分类号:
贺瑜环, 杨秀媛, 陈麒宇, 卜思齐, 徐智蔷, 肖天颖. 电动汽车智能充放电控制与应用综述[J]. 发电技术, 2021, 42(2): 180-192.
Yuhuan HE, Xiuyuan YANG, Qiyu CHEN, Siqi BU, Zhiqiang XU, Tianying XIAO. Review of Intelligent Charging and Discharging Control and Application of Electric Vehicles[J]. Power Generation Technology, 2021, 42(2): 180-192.
性能 | 锂离子电池 | 镍镉电池 | 镍氢电池 |
工作电压/V | 3.7 | 1.2 | 1.2 |
电池容量 | 高 | 低 | 中 |
质量比能量/(W·h/kg) | 100~160 | 45 | 60 |
体积比能量/(W·h/L) | 280 | 160 | 210 |
循环寿命/次 | 500~1 000 | 300~700 | 200~600 |
放电率/(%/月) | 2~5 | 15~30 | 25~35 |
低温性能 | 较差 | 优 | 优 |
高温性能 | 优 | 一般 | 差 |
记忆效应 | 无 | 有 | 无 |
表1 不同类型电池性能对比
Tab. 1 Performance comparison of different types of batteries
性能 | 锂离子电池 | 镍镉电池 | 镍氢电池 |
工作电压/V | 3.7 | 1.2 | 1.2 |
电池容量 | 高 | 低 | 中 |
质量比能量/(W·h/kg) | 100~160 | 45 | 60 |
体积比能量/(W·h/L) | 280 | 160 | 210 |
循环寿命/次 | 500~1 000 | 300~700 | 200~600 |
放电率/(%/月) | 2~5 | 15~30 | 25~35 |
低温性能 | 较差 | 优 | 优 |
高温性能 | 优 | 一般 | 差 |
记忆效应 | 无 | 有 | 无 |
性能 | 比亚迪E6 | 荣威Ei5 | 宝马i3 | Model X |
最大功率/kW | 120 | 85 | 125 | 487 |
电池容量/(kW·h) | 82.0 | 52.5 | 42.2 | 100.0 |
快充时间/h | 1.50 | 0.67 | 0.70 | 1.00 |
慢充时间/h | 8.0 | 8.5 | 4.9 | 10.0 |
续航里程/km | 400 | 420 | 340 | 575 |
最大扭矩/(N·m) | 450 | 255 | 250 | 404 |
表2 不同类型电动汽车性能对比
Tab. 2 Performance comparison of different types of electric vehicles
性能 | 比亚迪E6 | 荣威Ei5 | 宝马i3 | Model X |
最大功率/kW | 120 | 85 | 125 | 487 |
电池容量/(kW·h) | 82.0 | 52.5 | 42.2 | 100.0 |
快充时间/h | 1.50 | 0.67 | 0.70 | 1.00 |
慢充时间/h | 8.0 | 8.5 | 4.9 | 10.0 |
续航里程/km | 400 | 420 | 340 | 575 |
最大扭矩/(N·m) | 450 | 255 | 250 | 404 |
1 |
孙思宇, 于成琪, 孙涛, 等. 冷热电三联供分布式能源系统研究进展[J]. 华电技术, 2019, 41 (11): 26- 31.
DOI |
SUN S Y , YU C Q , SUN T , et al. Advance in study on CCHP distributed energy system[J]. Huadian Technology, 2019, 41 (11): 26- 31.
DOI |
|
2 |
潘旭东, 黄豫, 唐金锐, 等. 新能源发电发展的影响因素分析及前景展望[J]. 智慧电力, 2019, 47 (11): 41- 47.
DOI |
PAN X D , HUANG Y , TANG J R , et al. Influencing factors and prospects for development of renewable energy power generation[J]. Smart Power, 2019, 47 (11): 41- 47.
DOI |
|
3 | 焦伟航. 火力发电厂应用海水热泵进行区域供热的分析与设计[J]. 浙江电力, 2019, 38 (3): 98- 105. |
JIAO W H . Analysis and design of district heating using seawater heat pump in thermal power plant[J]. Zhejiang Electric Power, 2019, 38 (3): 98- 105. | |
4 | 王汉华, 陈永进. 电动汽车充电设施接入配电网的最优布点规划[J]. 广东电力, 2018, 31 (4): 72- 78. |
WANG H H , CHEN Y J . Optimal stationing planning for electric vehicle charging facilities accessing to distribution network[J]. Guangdong Electric Power, 2018, 31 (4): 72- 78. | |
5 |
李磊, 赵新, 李晓辉, 等. 基于动态交通信息的电动汽车充电需求预测模型及其对配网的影响分析[J]. 电网与清洁能源, 2020, 36 (3): 107- 118.
DOI |
LI L , ZHAO X , LI X H , et al. Electric vehicle charging demand prediction model based on dynamic traffic information and its impacts on distribution networks[J]. Power System and Clean Energy, 2020, 36 (3): 107- 118.
DOI |
|
6 |
BRADLEY T H , QUINN C W . Analysis of plug-in hybrid electric vehicle utility factors[J]. Journal of Power Sources, 2010, 195 (16): 5399- 5408.
DOI |
7 | LOPES J A P , SOARES F J , ALMEIDA P M R . Integration of electric vehicles in the electric power system[J]. Proceedings of the IEEE, 2010, 99 (1): 168- 183. |
8 |
胡文平, 巫伟南, 郝婉梦, 等. 含电动汽车的配电网运行风险评估[J]. 现代电力, 2016, 33 (2): 45- 50.
DOI URL |
HU W P , WU W N , HAO W M , et al. Operation risk assessment on distribution system with the integration of electric vehicles[J]. Modern Electric Power, 2016, 33 (2): 45- 50.
DOI URL |
|
9 | 李琥, 周琪, 史静, 等. 大规模电动汽车接入电网对南京市负荷特性的影响及对策[J]. 电力系统及其自动化学报, 2016, 28 (S1): 19- 24. |
LI H , ZHOU Q , SHI J , et al. Impact of large-scale electric vehicles connected to power grid on the load characteristics in Nanjing city and the corresponding countermeasures[J]. Proceedings of the CSU-EPSA, 2016, 28 (S1): 19- 24. | |
10 |
张乐平, 张明明, 林伟斌. 电动汽车与电网统一互动架构设计与探讨[J]. 现代电力, 2014, 31 (1): 34- 39.
DOI URL |
ZHANG L P , ZHANG M M , LIN W B . Design and discussion of a unified EV-grid integration structure[J]. Modern Electric Power, 2014, 31 (1): 34- 39.
DOI URL |
|
11 | 李惠玲, 白晓民, 谭闻, 等. 电动汽车入网技术在配电网的应用研究[J]. 中国电机工程学报, 2012, 32 (S1): 22- 27. |
LI H L , BAI X M , TAN W , et al. Application of vehicle to grid to the distribution grid[J]. Proceedings of the CSEE, 2012, 32 (S1): 22- 27. | |
12 | 杜成刚, 张华, 李瑾, 等. 电动汽车入网技术在智能电网中的应用[J]. 华东电力, 2010, 38 (4): 557- 560. |
DU C G , ZHANG H , LI J , et al. Application of electric vehicle access network technology in intellectual grid[J]. East China Electric Power, 2010, 38 (4): 557- 560. | |
13 | 刘晓飞, 张千帆, 崔淑梅. 电动汽车V2G技术综述[J]. 电工技术学报, 2012, 27 (2): 121- 127. |
LIU X F , ZHANG Q F , CUI S M . Review of electric vehicle V2G technology[J]. Transactions of China Electrotechnical Society, 2012, 27 (2): 121- 127. | |
14 |
李瑾, 杜成刚, 张华. 智能电网与电动汽车双向互动技术综述[J]. 供用电, 2010, 27 (3): 12- 14.
DOI |
LI J , DU C G , ZHANG H . Summary on the two-way interaction between smart grid and the electric vehicle[J]. Distribution & Utilization, 2010, 27 (3): 12- 14.
DOI |
|
15 |
张秉良, 孙玉田, 李建祥. 电动汽车的电网调峰模型及效益分析[J]. 供用电, 2012, 29 (1): 29- 32.
DOI |
ZHANG B L , SUN Y T , LI J X . The model and the benefits analysis of electric vehicle for peak-load regulation in grid[J]. Distribution & Utilization, 2012, 29 (1): 29- 32.
DOI |
|
16 |
AL-AWAMI A T , SORTOMME E . Coordinating vehicle-to-grid services with energy trading[J]. IEEE Transactions on Smart Grid, 2012, 3 (1): 453- 462.
DOI URL |
17 |
LIU H , HU Z C , SONG Y H , et al. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 3480- 3489.
DOI URL |
18 |
杨玉红, 张峰, 张艳芳. 电动汽车参与电网调峰的分析研究[J]. 电力学报, 2012, 27 (4): 306- 309.
DOI |
YANG Y H , ZHANG F , ZHANG Y F . Analysis of power grid peak shaving with electric vehicles[J]. Journal of Electric Power, 2012, 27 (4): 306- 309.
DOI |
|
19 | WEHINGER L A, GALUS M D, ANDERSSON G. Agent-based simulator for the German electricity wholesale market including wind power generation and widescale PHEV adoption[C]//Energy Market. IEEE, 2010: 1-6. |
20 | 王浩然, 陈思捷, 严正, 等. 基于区块链的电动汽车充电站充电权交易: 机制、模型和方法[J]. 中国电机工程学报, 2020, 40 (2): 425- 436. |
WANG H R , CHEN S J , YAN Z , et al. Blockchain-enabled charging right trading among EV charging stations: mechanism, model, and method[J]. Proceedings of the CSEE, 2020, 40 (2): 425- 436. | |
21 | 金志刚, 吴若茜, 李根, 等. 基于联盟区块链的电动汽车充电交易模型[J]. 电网技术, 2019, 43 (12): 4362- 4370. |
JIN Z G , WU R Q , LI G , et al. Transaction model for electric vehicle charging based on consortium blockchain[J]. Power System Technology, 2019, 43 (12): 4362- 4370. | |
22 | 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32 (4): 1- 10. |
HU Z C , SONG Y H , XU Z W , et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE, 2012, 32 (4): 1- 10. | |
23 | 张祖平, 陈麒宇, 杨秀媛, 等. 大容量直流充电桩集群的调峰研究[J]. 发电技术, 2019, 40 (1): 11- 16. |
ZHANG Z P , CHEN Q Y , YANG X Y , et al. Study of the group controlling on large-capacity dc charging piles for peak load regulation[J]. Power Generation Technology, 2019, 40 (1): 11- 16. | |
24 | 张洪财, 胡泽春, 宋永华, 等. 考虑时空分布的电动汽车充电负荷预测方法[J]. 电力系统自动化, 2014, 38 (1): 13- 20. |
ZHANG H C , HU Z C , SONG Y H , et al. A prediction method for electric vehicle charging load considering spatial and temporal distribution[J]. Automation of Electric Power Systems, 2014, 38 (1): 13- 20. | |
25 | 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34 (11): 126- 130. |
TIAN L T , SHI S L , JIA Z . A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34 (11): 126- 130. | |
26 |
苏小林, 张艳娟, 武中, 等. 规模化电动汽车充电负荷的预测及其对电网的影响[J]. 现代电力, 2018, 35 (1): 45- 54.
DOI |
SU X L , ZHANG Y J , WU Z , et al. Forecasting the charging load of large-scale electric vehicle and its impact on the power grid[J]. Modern Electric Power, 2018, 35 (1): 45- 54.
DOI |
|
27 |
NIE Y Q , CHUNG C Y , XU N Z . System state estimation considering EV penetration with unknown behavior using Quasi-Newton method[J]. IEEE Transactions on Power Systems, 2016, 31 (6): 4605- 4615.
DOI |
28 | TAO S , LIAO K , XIAO X , et al. Charging demand for electric vehicle based on stochastic analysis of trip chain[J]. IET Generation Transmission & Distribution, 2016, 10 (11): 2689- 2698. |
29 |
HUANG H , CHUNG C Y , CHAN K W , et al. Quasi-Monte Carlo based probabilistic small signal stability analysis for power systems with plug-in electric vehicle and wind power integration[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 3335- 3343.
DOI URL |
30 | 邵尹池, 穆云飞, 余晓丹, 等. "车-路-网"模式下电动汽车充电负荷时空预测及其对配电网潮流的影响[J]. 中国电机工程学报, 2017, 37 (18): 5207- 5219. |
SHAO Y C , MU Y F , YU X D , et al. A spatial-temporal charging load forecast and impact analysis method for distribution network using EVs-traffic-distribution model[J]. Proceedings of the CSEE, 2017, 37 (18): 5207- 5219. | |
31 | 杨昕然, 吕林, 向月, 等. "车-路-网"耦合下电动汽车恶劣充电场景及其对城市配电网电压稳定性影响[J]. 电力自动化设备, 2019, 39 (10): 102- 108. |
YANG X R , LÜ L , XIANG Y , et al. Degradation charging scenarios and impacts on voltage stability of urban distribution network under "EV-road-grid" coupling[J]. Electric Power Automation Equipment, 2019, 39 (10): 102- 108. | |
32 | 徐青山, 蔡婷婷, 刘瑜俊, 等. 考虑驾驶人行为习惯及出行链的电动汽车充电站站址规划[J]. 电力系统自动化, 2016, 40 (4): 59- 65. |
XU Q S , CAI T T , LIU Y J , et al. Location planning of charging stations for electric vehicles based on drivers' behaviours and travel chain[J]. Automation of Electric Power Systems, 2016, 40 (4): 59- 65. | |
33 |
ZHANG P , QIAN K J , ZHOU C K , et al. A methodology for optimization of power systems demand due to electric vehicle charging load[J]. IEEE Transactions on Power Systems, 2012, 27 (3): 1628- 1636.
DOI URL |
34 | 吴晨曦, 张杰, 张新延, 等. 考虑电价影响的电动汽车削峰填谷水平评价[J]. 电力系统保护与控制, 2019, 47 (17): 14- 22. |
WU C X , ZHANG J , ZHANG X Y , et al. Load shifting level evaluation of EVs in the different energy price environment[J]. Power System Protection and Control, 2019, 47 (17): 14- 22. | |
35 |
杨国清, 罗航, 王德意, 等. 分时电价与电动汽车优化调度的主从博弈模型[J]. 电力系统及其自动化学报, 2018, 30 (10): 55- 60.
DOI |
YANG G Q , LUO H , WANG D Y , et al. Leader-follower game model of time-of-use electricity price and optimized plug-in electric vehicle dispatching[J]. Proceedings of the CSU-EPSA, 2018, 30 (10): 55- 60.
DOI |
|
36 | CHANG R F, CHANG Y C, LU C N. Loss minimization of distribution systems with electric vehicles by network reconfiguration[C]//2012 International Conference on Control Engineering and Communication Technology. 2012: 551-555. |
37 | O'CONNELL N, WU Q W, OSTERGAARD J, et al. Electric vehicle (EV) charging management with dynamic distribution system tariff[C]//2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies. 2011: 1-7. |
38 | DAUER D, FLATH C M, STROHLE P, et al. Market-based EV charging coordination[C]//2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), November 17-20, 2013, Atlanta, GA, USA. IEEE, 2013: 102-107. |
39 | 魏大钧, 张承慧, 孙波, 等. 基于分时电价的电动汽车充放电多目标优化调度[J]. 电网技术, 2014, 38 (11): 2972- 2977. |
WEI D J , ZHANG C H , SUN B , et al. A time-of-use price based multi-objective optimal dispatching for charging and discharging of electric vehicles[J]. Power System Technology, 2014, 38 (11): 2972- 2977. | |
40 | 常方宇, 黄梅, 张维戈. 分时充电价格下电动汽车有序充电引导策略[J]. 电网技术, 2016, 40 (9): 2609- 2615. |
CHANG F Y , HUANG M , ZHANG W G . Research on coordinated charging of electric vehicles based on TOU charging price[J]. Power System Technology, 2016, 40 (9): 2609- 2615. | |
41 |
潘振宁, 张孝顺, 余涛, 等. 大规模电动汽车集群分层实时优化调度[J]. 电力系统自动化, 2017, 41 (16): 96- 104.
DOI |
PAN Z N , ZHANG X S , YU T , et al. Hierarchical real-time optimized dispatching for large-scale clusters of electric vehicles[J]. Automation of Electric Power Systems, 2017, 41 (16): 96- 104.
DOI |
|
42 | 潘胤吉, 邱晓燕, 肖建康, 等. 电动汽车充电负荷的时空双层优化调度策略[J]. 南方电网技术, 2018, 55 (6): 62- 70. |
PAN Y J , QIU X Y , XIAO J K , et al. Optimal temporal and spatial bi-layer scheduling strategy of electric vehicles charging load[J]. Southern Power System Technology, 2018, 55 (6): 62- 70. | |
43 | 陈麒宇. 泛在电力物联网实施策略研究[J]. 发电技术, 2019, 40 (2): 99- 106. |
CHEN Q Y . Research on implementation strategy of ubiquitous power internet of things[J]. Power Generation Technology, 2019, 40 (2): 99- 106. | |
44 | 郑宇, 张睿, 李正佳, 等. 基于多群组均衡协同搜索算法的电动汽车充放电多目标优化[J]. 南方电网技术, 2017, 11 (1): 52- 57. |
ZHENG Y , ZHANG R , LI Z J , et al. Multi-objective optimization of charging and discharging strategy for electric vehicles based on equilibrium-inspired multiple group search optimization[J]. Southern Power System Technology, 2017, 11 (1): 52- 57. | |
45 |
戴越繁, 杨伟. 计及电池放电损耗的电动汽车充放电优化调度策略[J]. 电工电气, 2019, (10): 1- 8.
DOI |
DAI Y F , YANG W . An optimal dispatching strategy for charging and discharging of electric vehicles accounting battery discharging loss[J]. Electrotechnics Electric, 2019, (10): 1- 8.
DOI |
|
46 |
杨春萍, 赵祺, 祁兵, 等. 基于用户利益与出行意愿的电动汽车充放电调度策略[J]. 电测与仪表, 2018, 55 (8): 106- 112.
DOI URL |
YANG C P , ZHAO Q , QI B , et al. Charge and discharge scheduling strategy of electric vehicle based on interest and travel intention of users[J]. Electrical Measurement & Instrumentation, 2018, 55 (8): 106- 112.
DOI |
|
47 |
张聪, 许晓慧, 孙海顺, 等. 基于自适应遗传算法的规模化电动汽车智能充电策略研究[J]. 电力系统保护与控制, 2014, 42 (14): 19- 24.
DOI URL |
ZHANG C , XU X H , SUN H S , et al. Smart charging strategy of large-scale electric vehicles based on adaptive genetic algorithm[J]. Power System Protection and Control, 2014, 42 (14): 19- 24.
DOI URL |
|
48 | NAKAMOTO S.Bitcoin: a peer-to-peer electronic cash system[EB/OL].[2020-03-01].https: //bitcoin.org/bitcoin.pdf. |
49 | 邵炜晖, 许维胜, 徐志宇, 等. 基于区块链的虚拟电厂模型研究[J]. 计算机科学, 2018, 45 (2): 25- 31. |
SHAO W H , XU W S , XU Z Y , et al. Study on virtual power plant model based on blockchain[J]. Computer Science, 2018, 45 (2): 25- 31. | |
50 |
喻小宝, 郑丹丹. 区块链技术在能源电力领域的应用及展望[J]. 华电技术, 2020, 42 (8): 17- 23.
DOI |
YU X B , ZHENG D D . Application and exploration of blockchain technology in energy and electricity[J]. Huadian Technology, 2020, 42 (8): 17- 23.
DOI |
|
51 | 王君宇, 吴清烈, 曹卉宇. 国内区块链典型应用研究综述[J]. 科技与经济, 2019, 32 (5): 1- 6. |
WANG J Y , WU Q L , CAO H Y . Overview of research on typical application of domestic block chain[J]. Science & Technology and Economy, 2019, 32 (5): 1- 6. | |
52 | 丁腾波, 刘宏波, 陶佳, 等. 区块链技术在智慧能源体系中的应用研究[J]. 发电技术, 2019, 40 (5): 403- 412. |
DING T B , LIU H B , TAO J , et al. Application of block chain technology in intelligent energy system[J]. Power Generation Technology, 2019, 40 (5): 403- 412. |
[1] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[2] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[3] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[4] | 付红军, 朱劭璇, 王步华, 谢岩, 熊浩清, 唐晓骏, 杜晓勇, 李程昊, 李晓萌. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362. |
[5] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[6] | 潘晓杰, 徐友平, 解治军, 王玉坤, 张慕婕, 石梦璇, 马坤, 胡伟. 堆栈式集成学习驱动的电力系统暂态稳定预防控制优化方法[J]. 发电技术, 2023, 44(6): 865-874. |
[7] | 贾俊, 范炜豪, 吕志鹏, 姚建光, 周珊, 王健, 张锦涛. 用于电动汽车集群并网的直流变压器启动研究[J]. 发电技术, 2023, 44(6): 875-882. |
[8] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[9] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[10] | 吴灏, 许晓, 彭紫楠, 郭宁辉, 王淇锋. 基于电网云数据管理的电气设备大数据移动实验室及其应用研究[J]. 发电技术, 2023, 44(3): 417-424. |
[11] | 杜将武, 唐小强, 罗志伟, 刘敦楠, 陈积旭, 徐尔丰, 毕圣. 面向综合能源园区的丰枯电价定价方法[J]. 发电技术, 2023, 44(2): 261-269. |
[12] | 肖洋, 李志强, 程林, 汤磊, 夏潮, 梁英, 宋锐, 王东阳, 李贺文. 西北电网集中式调相机AVC综合协调控制策略[J]. 发电技术, 2023, 44(2): 270-279. |
[13] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
[14] | 董宸, 吴强, 黄河, 章锐, 杨秀媛. 基于免疫算法的电网拓扑结构识别[J]. 发电技术, 2023, 44(1): 125-135. |
[15] | 高骞, 杨俊义, 洪宇, 孙小磊, 朱前进, 俞天, 王鑫, 王琳媛, 李泽森. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术, 2022, 43(6): 851-859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||