1 |
薛晓东, 韩巍, 王晓东, 等. 适合分布式冷热电联供系统的中小型发电装置[J]. 发电技术, 2020, 41 (3): 252- 260.
|
|
XUE X D , HAN W , WANG X D , et al. Small and medium-scale power generation devices suiting for distributed combined cooling, heating and power system[J]. Power Generation Technology, 2020, 41 (3): 252- 260.
|
2 |
丁继伟, 李岩. 基于弹塑性理论的燃机转子寿命分析[J]. 发电技术, 2020, 41 (2): 202- 205.
|
|
DING J W , LI Y . Analysis on gas turbine rotor life based on elastoplastic theory[J]. Power Generation Technology, 2020, 41 (2): 202- 205.
|
3 |
苏烨, 丁俊宏, 丁宁, 等. 全国燃气轮机联合循环机组热控系统典型故障分析及预控措施建议[J]. 浙江电力, 2020, 39 (8): 95- 102.
|
|
SU Y , DING J H , DING N , et al. Typical fault analysis and proposals of pre-control measures for thermal control system of national gas turbine combined cycle units[J]. Zhejiang Electric Power, 2020, 39 (8): 95- 102.
|
4 |
杨卫国, 祝铁军, 王庆韧, 等. 燃气轮机组压气机失速引发的不稳定振动分析[J]. 广东电力, 2019, 32 (7): 37- 43.
|
|
YANG W G , ZHU T J , WANG Q R , et al. Analysis on unstable vibration caused by stall of gas turbine compressor[J]. Guangdong Electric Power, 2019, 32 (7): 37- 43.
|
5 |
朱俊杰, 王晓维, 董玉亮, 等. 基于工况辨识的重型燃气轮机性能评价方法研究[J]. 智慧电力, 2020, 48 (7): 24- 29.
DOI
|
|
ZHU J J , WANG X W , DONG Y L , et al. Performance evaluation method of heavy duty gas turbine based on condition identification[J]. Smart Power, 2020, 48 (7): 24- 29.
DOI
|
6 |
白明亮. 故障案例稀缺场景下的燃气轮机智能故障检测及诊断研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
BAI M L. Study on intelligent fault detection and diagnosis of gas turbine under the scarcity of fault cases[D]. Harbin: Harbin Institute of Technology, 2020.
|
7 |
刘娇. 燃气轮机高温部件故障早期预警研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
LIU J. Research on early warning of gas turbine high temperature components fault[D]. Harbin: Harbin Institute of Technology, 2019.
|
8 |
TAHAN M , TSOUTSANIS E , MUHAMMAD M , et al. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review[J]. Applied Energy, 2017, 198, 122- 144.
DOI
|
9 |
LIN X S, LI B W, YANG X Y. Engine components fault diagnosis using an improved method of deep belief networks[C]//7th International Conference on Mechanical and Aerospace Engineering(ICMAE). IEEE, 2016: 454-459.
|
10 |
WONG P K , YANG Z , VONG C M , et al. Real-time fault diagnosis for gas turbine generator systems using extreme learning machine[J]. Neurocomputing, 2014, 128 (3): 249- 257.
|
11 |
MARAGOUDAKIS M, LOUKIS E, PANTELIDES P P. Random forests identification of gas turbine faults[C]//19th International Conference on Systems Engineering. IEEE, 2008: 127-132.
|
12 |
WANG L , LI Y G , ABDUL GHAFIR M F , et al. A rough set-based gas turbine fault classification approach using enhanced fault signatures[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225 (8): 1052- 1065.
DOI
|
13 |
LECUN Y , BENGIO Y , HINTON G , et al. Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
DOI
|
14 |
YAN L P , DONG X Z , WANG T , et al. A fault diagnosis method for gas turbines based on improved data preprocessing and an optimization deep belief network[J]. Measurement Science and Technology, 2019, 31 (1): 151- 162.
DOI
|
15 |
FU X Y , LUO H , ZHONG S , et al. Aircraft engine fault detection based on grouped convolutional denoising autoencoders[J]. Chinese Journal of Aeronautics, 2019, 32 (2): 296- 307.
DOI
|
16 |
MULEWICZ B , MARZEC M , MORKISZ P , et al. Failures prediction based on performance monitoring of a gas turbine: a binary classification approach[J]. Schedae Information, 2018, 38 (26): 9- 21.
|
17 |
LIU J , LIU J , YU D , et al. Fault detection for gas turbine hot components based on a convolutional neural network[J]. Energies, 2018, 11 (8): 2149- 2158.
DOI
|
18 |
赵志宏, 李乐豪, 杨绍普, 等. 一种频域特征提取自编码器及其在故障诊断中的应用研究[J/OL]. 中国机械工程: 1-8[2021-03-16]. http://kns.cnki.net/kcms/detail/42.1294.th.20210316.1534.006.html.
|
|
ZHAO Z H, LI L H, YANG S P, et al. A frequency domain feature extraction auto-encoder and its application on fault diagnosis[J/OL]. China Mechanical Engineering: 1-8[2021-03-16]. http://kns.cnki.net/kcms/detail/42.1294.th.20210316.1534.006.html.
|
19 |
顾珉, 施华君. 基于降噪自编码器降维的汽车行驶工况分析[J]. 计算机系统应用, 2021, 30 (1): 38- 44.
|
|
GU M , SHI H J . Analysis of vehicle driving condition based on de-noise autoencoder[J]. Computer Systems & Applications, 2021, 30 (1): 38- 44.
|
20 |
周云成, 邓寒冰, 许童羽, 等. 基于稠密自编码器的无监督番茄植株图像深度估计模型[J]. 农业工程学报, 2020, 36 (11): 182- 192.
|
|
ZHOU Y C , DENG H B , XU T Y , et al. Unsupervised deep estimation modeling for tomato plant image based on dense convolutional auto-encoder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (11): 182- 192.
|
21 |
TAX D M J , DUIN R P W . Support vector data description[J]. Machine learning, 2004, 54 (1): 45- 66.
DOI
|