发电技术 ›› 2025, Vol. 46 ›› Issue (2): 252-262.DOI: 10.12096/j.2096-4528.pgt.24162

• 基于群体智能的综合能源系统建模仿真及优化运行 • 上一篇    

考虑需求响应和碳交易的园区氢电耦合系统两阶段鲁棒优化调度

张佳鑫, 彭勇刚, 孙静   

  1. 浙江大学电气工程学院,浙江省 杭州市 310057
  • 收稿日期:2024-07-25 修回日期:2024-10-15 出版日期:2025-04-30 发布日期:2025-04-23
  • 作者简介:张佳鑫(1999),女,硕士,研究方向为氢能与氢电融合电力系统技术, jx_zhang@zju.edu.cn
    彭勇刚(1978),男,博士,教授,研究方向为氢能与氢电融合电力系统技术,本文通信作者, pengyg@zju.edu.cn
    孙静(1999),女,博士研究生,研究方向为氢能与氢电融合电力系统技术, 12210098@zju.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFB1506801);国家自然科学基金项目(51877188)

Two-Stage Robust Optimization Scheduling of Park-Level Hydrogen-Electric Coupling Systems With Demand Response and Carbon Trading

Jiaxin ZHANG, Yonggang PENG, Jing SUN   

  1. College of Electrical Engineering, Zhejiang University, Hangzhou 310057, Zhejiang Province, China
  • Received:2024-07-25 Revised:2024-10-15 Published:2025-04-30 Online:2025-04-23
  • Supported by:
    National Key R&D Program of China(2020YFB1506801);National Natural Science Foundation of China(51877188)

摘要:

目的 氢能作为具有高能量密度和零碳排放的清洁能源,是未来能源系统的重要组成部分。针对园区氢电耦合系统(hydrogen-electric coupling system,HECS),提出了考虑负荷需求响应和阶梯碳交易的两阶段鲁棒优化调度模型。 方法 首先,构建含风光发电机组、备用发电机组、储能系统以及氢电转换设备的园区氢电耦合系统。然后,将需求响应和阶梯碳交易引入到模型中,以系统购能成本、运维成本和碳排放成本之和最小为目标,构建该系统的确定性优化模型。最后,将源荷自适应不确定集整合到确定性优化模型中,以消除源荷不确定性对调度结果的影响,形成两阶段鲁棒优化模型,利用主从框架对该模型进行重构,采用列和约束生成法进行求解。 结果 在源荷不确定系数为12和6的情况下,可调占比为0.5以下的需求响应负荷可以降低系统1.6%的运营成本,阶梯碳交易的引入可以减少604.9 kg的碳排放量。 结论 所提模型可以提高园区HECS的抗风险能力,需求响应和阶梯式碳交易的引入可以保证园区HECS的经济性和低碳性运行。

关键词: 氢能, 双碳, 氢电耦合系统(HECS), 两阶段鲁棒优化, 阶梯式碳交易, 不确定性, 需求响应

Abstract:

Objectives Hydrogen energy, as a clean energy source with high energy density and zero carbon emissions, is an important component of future energy systems. For park-level hydrogen-electric coupling systems (HECS), a two-stage robust optimization scheduling model that considers demand response and tiered carbon trading is proposed. Methods First, a park-level HECS is established, consisting of wind and solar power generation units, backup generation units, energy storage systems, and hydrogen-electric conversion devices. Then, demand response and tiered carbon trading are integrated into the model, aiming to minimize the total costs of system energy procurement, operation and maintenance, and carbon emissions, thereby establishing a deterministic optimization model for the system. Finally, a source-load uncertainty set is incorporated into the deterministic optimization model to mitigate the effect of source-load uncertainty on scheduling results, forming a two-stage robust optimization model. This model is re-established using a master-slave framework and solved using the column-and-constraint generation method. Results With source-load uncertainty coefficients of 12 and 6, demand response loads with an adjustable ratio below 0.5 can reduce the system's operating costs by 1.6%. The introduction of tiered carbon trading can reduce carbon emissions by 604.9 kg. Conclusions The proposed model can improve the risk resilience of park-level HECS, and the integration of demand response and tiered carbon trading can ensure the economic and low-carbon operation of HECS.

Key words: hydrogen energy, dual carbon, hydrogen-electric coupling system (HECS), two-stage robust optimization, tiered carbon trading, uncertainty, demand response

中图分类号: