1 |
YANG B, LI Y, LI J,et al .Comprehensive summary of solid oxide fuel cell control:a state-of-the-art review[J].Protection and Control of Modern Power Systems,2022,7(3):1-31. doi:10.1186/s41601-022-00251-0
|
2 |
NECHACHE A, HODY S .Alternative and innovative solid oxide electrolysis cell materials:a short review[J].Renewable and Sustainable Energy Reviews,2021,149:111322. doi:10.1016/j.rser.2021.111322
|
3 |
郭心如,郭雨旻,罗方,等 .磷酸燃料电池的能效、㶲及生态特性分析[J].发电技术,2022,43(1):73-82.
|
|
GUO X R, GUO Y M, LUO F,et al .Analysis of energy,exergy and ecology characteristics of phosphoric acid fuel cell[J].Power Generation Technology,2022,43(1):73-82.
|
4 |
和萍,祁盼,申润杰,等 .计及风电和燃料电池的综合能源系统阻尼特性分析[J].电力科学与技术学报,2020,35(1):14-23.
|
|
HE P, QI P, SHEN R J,et al .Analysis of damping characteristics of an integrated energy system with hybrid wind-fuel cells integrated[J].Journal of Electric Power Science and Technology,2020,35(1):14-23.
|
5 |
LAN T, STRUNZ K .Multiphysics transients modeling of solid oxide fuel cells:methodology of circuit equivalents and use in EMTP-type power system simulation[J].IEEE Transactions on Energy Conversion,2017,32(4):1309-1321. doi:10.1109/TEC.2017.2687886
|
6 |
BAO C, WANG Y, FENG D,et al .Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J].Progress in Energy and Combustion Science,2018,66:83-140. doi:10.1016/j.pecs.2017.12.002
|
7 |
张瑞宇,王雨晴,任佳伟 .基于丙烷催化部分氧化的微管式固体氧化物燃料电池系统特性研究[J].发电技术,2024,45(3):486-493.
|
|
ZHANG R Y, WANG Y Q, REN J W .Characteristics research of a micro-tubular solid oxide fuel cell system based on catalytic partial oxidation of propane[J].Power Generation Technology,2024,45(3):486-493.
|
8 |
李林,刘彤宇,李爽,等 .甲醇重整制氢燃料电池发电研究进展[J].发电技术,2022,43(1):44-53. doi:10.12096/j.2096-4528.pgt.21116
|
|
LI L, LIU T Y, LI S,et al .Research progress of hydrogen production by methanol reforming for fuel cell power generation[J].Power Generation Technology,2022,43(1):44-53. doi:10.12096/j.2096-4528.pgt.21116
|
9 |
KOMATSU Y, BRUS G, KIMIJIMA S,et al .The effect of overpotentials on the transient response of the 300 W SOFC cell stack voltage[J].Applied Energy,2014,115:352-359. doi:10.1016/j.apenergy.2013.11.017
|
10 |
SUN L, JIN Y, SHEN J,et al .Sustainable residential micro-cogeneration system based on a fuel cell using dynamic programming-based economic day-ahead scheduling[J].ACS Sustainable Chemistry & Engineering,2021,9(8):3258-3266. doi:10.1021/acssuschemeng.0c08725
|
11 |
王倩如,王彩霞,顾吉鹏 .固体氧化物燃料电池的神经模糊控制策略研究[J].热能动力工程,2022,37(10):198-206. doi:10.1016/j.apenergy.2021.118214
|
|
WANG Q R, WANG C X, GU J P .Study on neural fuzzy control strategy of solid oxide fuel cell[J].Journal of Engineering for Thermal Energy and Power,2022,37(10):198-206. doi:10.1016/j.apenergy.2021.118214
|
12 |
ZHANG T, LI H, TU X,et al .Optimization of SOC fractional PID control parameters for solid oxide battery based on improved firefly algorithm[C]//2021 3rd International Conference on Industrial Artificial Intelligence (IAI).Shenyang,China:IEEE,2021:1-5. doi:10.1109/iai53119.2021.9619450
|
13 |
WU X, GAO D .Optimal robust control strategy of a solid oxide fuel cell system[J].Journal of Power Sources,2018,374:225-236. doi:10.1016/j.jpowsour.2017.10.070
|
14 |
ABBAKER A O, WANG H, TIAN Y .Voltage control of solid oxide fuel cell power plant based on intelligent proportional integral-adaptive sliding mode control with anti-windup compensator[J].Transactions of the Institute of Measurement and Control,2020,42(1):116-130. doi:10.1177/0142331219867779
|
15 |
LI J, YU T, YANG B .A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning[J].Applied Energy,2021,304:117541. doi:10.1016/j.apenergy.2021.117541
|
16 |
LI J, YU T .A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning[J].Journal of Cleaner Production,2021,321:128929. doi:10.1016/j.jclepro.2021.128929
|
17 |
HAN J .From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906. doi:10.1109/tie.2008.2011621
|
18 |
ZHOU J, XUE S, XUE Y,et al .A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning[J].Energy,2021,224:120118. doi:10.1016/j.energy.2021.120118
|
19 |
PADULLES J, AULT G W, MCDONALD J R .An integrated SOFC plant dynamic model for power systems simulation[J].Journal of Power sources,2000,86(1/2):495-500. doi:10.1016/s0378-7753(99)00430-9
|
20 |
SUN L, HUA Q, SHEN J,et al .A combined voltage control strategy for fuel cell[J].Sustainability,2017,9(9):1517. doi:10.3390/su9091517
|
21 |
LI Y, SHEN J, LU J .Constrained model predictive control of a solid oxide fuel cell based on genetic optimization[J].Journal of Power Sources,2011,196(14):5873-5880. doi:10.1016/j.jpowsour.2011.03.010
|
22 |
ZHAO C, LI D .Control design for the SISO system with the unknown order and the unknown relative degree[J].ISA Transactions,2014,53(4):858-872. doi:10.1016/j.isatra.2013.10.001
|
23 |
LADOSZ P, WENG L, KIM M,et al .Exploration in deep reinforcement learning:a survey[J].Information Fusion,2022,85:1-22. doi:10.1016/j.inffus.2022.03.003
|
24 |
FUJIMOTO S, VAN HOOF H, MEGER D .Addressing function approximation error in actor-critic methods[J].Proceedings of the 35th International Conference on Machine Learning,2018,80:1587-1596.
|
25 |
NGUYEN T T, NGUYEN N D, NAHAVANDI S .Deep reinforcement learning for multiagent systems:a review of challenges,solutions,and applications[J].IEEE Transactions on Cybernetics,2020,50(9):3826-3839. doi:10.1109/tcyb.2020.2977374
|