发电技术 ›› 2025, Vol. 46 ›› Issue (1): 31-41.DOI: 10.12096/j.2096-4528.pgt.24090

• 储能 • 上一篇    下一篇

考虑电转氢和需求响应的风光储综合充能站优化运行策略

崔露1, 刘世林1,2, 苗婉1, 王青1   

  1. 1.高端装备先进感知与智能控制教育部重点实验室(安徽工程大学),安徽省 芜湖市 241000
    2.安徽工程大学产业创新研究院有限公司,安徽省 芜湖市 241000
  • 收稿日期:2024-05-20 修回日期:2024-06-25 出版日期:2025-02-28 发布日期:2025-02-27
  • 作者简介:崔露(1997),男,硕士研究生,研究方向为风光储综合充能站优化调度,2350546479@qq.com
    刘世林(1978),男,博士,教授,研究方向为分布式综合能源系统、微电网优化与控制、储能技术等,本文通信作者,sl.liu@ahpu.edu.cn
    苗婉(1999),女,硕士研究生,研究方向为虚拟电厂优化调度,2896373462@qq.com
    王青(1997),女,硕士研究生,研究方向为新能源微电网优化调度,1559129414@qq.com
  • 基金资助:
    安徽省重点研究与开发计划项目(202004a05020014);安徽未来技术研究院企业合作项目(2023qyhz32)

Optimized Operation Strategy of Wind-Solar-Storage Integrated Charging Station Considering Power-to-Hydrogen and Demand Response

Lu CUI1, Shilin LIU1,2, Wan MIAO1, Qing WANG1   

  1. 1.Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education (Anhui Polytechnic University), Wuhu 241000, Anhui Province, China
    2.Anhui Polytechnic University Industrial Innovation Technology Co. , Ltd. , Wuhu 241000, Anhui Province, China
  • Received:2024-05-20 Revised:2024-06-25 Published:2025-02-28 Online:2025-02-27
  • Supported by:
    Anhui Provincial Key Research and Development Project(202004a05020014);Anhui Future Technology Research Institute Corporate Collaboration Project(2023qyhz32)

摘要:

目的 为兼顾新能源汽车的充能需求,同时促进可再生能源消纳,提出一种考虑电转氢和需求响应的风光储综合充能站优化运行策略。 方法 首先,基于Logistic函数响应机理构建充能站售电价格优化模型,并采用非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)求解,从而引导用户充电负荷合理转移;其次,基于优化后的售电价格和负荷分布情况,综合考虑充能站购能成本、运维成本及功率平衡等相关约束,以日运行成本最小为目标函数,建立含电转氢装置的风光储综合充能站优化运行模型;最后,在MATLAB平台上开展仿真研究。 结果 考虑电转氢和需求响应后,充能站日运行成本降低了34.74%,风、光消纳率分别提高了25.84%和61.60%。 结论 通过实施电转氢和需求响应措施,能够明显降低综合充能站的运行成本,同时提高风光的消纳能力。

关键词: 新能源汽车, 风光储综合充能站, 电转氢, 需求响应, 电价, 优化运行, 新能源消纳, 非支配排序遗传算法(NSGA-Ⅱ)

Abstract:

Objectives To meet the charging demands of new energy vehicles and promote the utilization of renewable energy, an optimized operation strategy of a wind-solar-storage integrated charging station, considering power-to-hydrogen conversion and demand response is proposed. Methods Firstly, an optimized model for electricity price at energy charging stations is developed based on the Logistic function response mechanism. This model is then solved using the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ), thereby guiding users to reasonably shift the charging load. Secondly, based on the optimized electricity price and load distribution, and by comprehensively considering energy procurement costs, operational and maintenance expenses, and constraints such as power balance at energy charging stations, an optimized operational model is established for a wind-solar-storage integrated charging station equipped with a power-to-hydrogen conversion device. This model aimed to minimize daily operational costs. Finally, simulation research is conducted on the MATLAB platform. Results Considering the power-to-hydrogen conversion and demand response, the daily operational costs of the charging stations are reduce by 34.74%, and the utilization rates of the wind and solar power increased by 25.84% and 61.60% respectively. Conclusions Through the implementation of power-to-hydrogen conversion and demand response measures, the operational costs of the charging stations can be significantly reduced, and the utilization of wind and solar power can be improved.

Key words: new energy vehicles, wind-solar-storage integrated charging station, power-to-hydrogen, demand response, electricity price, optimized operation, renewable energy consumption, non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)

中图分类号: