发电技术 ›› 2021, Vol. 42 ›› Issue (6): 690-698.DOI: 10.12096/j.2096-4528.pgt.21094
收稿日期:
2021-07-20
出版日期:
2021-12-31
发布日期:
2021-12-23
通讯作者:
高博
作者简介:
孙浩(1995), 男, 硕士研究生, 研究方向为塔式光热电站定日镜场布局, 824490722@qq.com基金资助:
Hao SUN(), Bo GAO(
), Jianxing LIU(
)
Received:
2021-07-20
Published:
2021-12-31
Online:
2021-12-23
Contact:
Bo GAO
Supported by:
摘要:
对基于辐射网格布局和无遮挡损失原则所衍生出的无遮挡(EB)布局、无阻塞(No blocking-dense)布局、经验型(DELSOL)布局3种塔式定日镜场布局进行了研究。对这3种布局的数学模型进行了归纳,结合塔式电站Gemasolar的部分设计参数,分别根据3种布局模式采用SolarPILOT软件对镜场进行建模仿真。利用MATLAB对建模所得镜场坐标数据进行处理,得到径向间距和方位间距变化曲线,验证了3种布局数学模型的合理性。通过分析各镜场中基础环和交错环的排布特点得出镜环布置规则,同时从镜场的定日镜数量、光学效率、土地利用率、接收能量等方面对比不同布局的性能,分析其优缺点。结果表明:在镜场半径为1 000 m的范围内,No blocking-dense布局下镜场的年均光学效率和土地利用率最高,EB布局次之,但EB布局下定日镜数量和镜场接收能量最多,DELSOL布局的各项性能特性均最低。
中图分类号:
孙浩, 高博, 刘建兴. 塔式太阳能电站定日镜场布局研究[J]. 发电技术, 2021, 42(6): 690-698.
Hao SUN, Bo GAO, Jianxing LIU. Study on Heliostat Field Layout of Solar Power Tower Plant[J]. Power Generation Technology, 2021, 42(6): 690-698.
类别 | 参数 | 数值 |
资源环境 | 纬度/(°) | 37.42 |
经度/(°) | −5.90 | |
年均DNI/(kW∙h/m2) | 2 172 | |
年均环境温度/℃ | 18.4 | |
设计点逐时DNI(W/m2) | 917 | |
定日镜场 | 定日镜高度/m | 12.305 |
定日镜宽度/m | 9.752 | |
定日镜面积/m2 | 120 | |
定日镜数量/面 | 2 650 | |
反射面积与总结构面积之比 | 0.960 | |
集热系统 | 吸热塔光学高度/m | 147 |
吸热器高度/m | 14.220 | |
吸热器直径/m | 8.890 | |
涂层吸收率/% | 95.0 | |
发电模块 | 汽轮发电机额定功率/MW | 19.9 |
汽轮机循环热效率/% | 37.5 | |
发电机效率/% | 87.5 |
表1 Gemasolar电站部分公开参数
Tab. 1 Partial public parameters of Gemasolar power plant
类别 | 参数 | 数值 |
资源环境 | 纬度/(°) | 37.42 |
经度/(°) | −5.90 | |
年均DNI/(kW∙h/m2) | 2 172 | |
年均环境温度/℃ | 18.4 | |
设计点逐时DNI(W/m2) | 917 | |
定日镜场 | 定日镜高度/m | 12.305 |
定日镜宽度/m | 9.752 | |
定日镜面积/m2 | 120 | |
定日镜数量/面 | 2 650 | |
反射面积与总结构面积之比 | 0.960 | |
集热系统 | 吸热塔光学高度/m | 147 |
吸热器高度/m | 14.220 | |
吸热器直径/m | 8.890 | |
涂层吸收率/% | 95.0 | |
发电模块 | 汽轮发电机额定功率/MW | 19.9 |
汽轮机循环热效率/% | 37.5 | |
发电机效率/% | 87.5 |
1 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 230. |
ZHANG Z Y , JU X , PAN X Y , et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41 (3): 220- 230. | |
2 | 王泽众, 黄平瑞, 魏高升, 等. 太阳能热发电固-气两相化学储热技术研究进展[J]. 发电技术, 2021, 42 (2): 238- 246. |
WANG Z Z , HUANG P R , WEI G S , et al. Research progress of solid-gas two-phase chemical heat storage technology for solar thermal power generation[J]. Power Generation Technology, 2021, 42 (2): 238- 246. | |
3 |
曹传钊, 郑建涛, 刘明义, 等. 塔式太阳能热发电技术的发展[J]. 可再生能源, 2013, 31 (12): 21- 25.
DOI |
CAO C K , ZHENG J T , LIU M Y , et al. The development of solar power tower technology[J]. Renewable Energy Resources, 2013, 31 (12): 21- 25.
DOI |
|
4 |
张茂龙, 卫慧敏, 杜小泽, 等. 塔式太阳能镜场阴影与遮挡效率的改进算法[J]. 太阳能学报, 2016, 37 (8): 1998- 2003.
DOI |
ZHANG M L , WEI H M , DU X Z , et al. Modified algorithm of shadow and blocking efficiency for heliostat field of solar power tower[J]. Acta Solar Energy, 2016, 37 (8): 1998- 2003.
DOI |
|
5 |
RIZVI A A , DANISH S N , EL-LEATHY A , et al. A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems[J]. Solar Energy, 2021, 218, 296- 311.
DOI |
6 | LIPPS F W , VANT-HULL L L . A cellwise method for the optimization of large central receiver systems[J]. Pergamon, 1978, 20 (6): 506- 516. |
7 | LAURENCE C L, LIPPS F W, VANTHULL L L. User's manual for the University of Houston individual heliostat layout and performance code[EB/OL]. (1984-12-01)[2021-07-01]. https://www.osti.gov/servlets/purl/6065468/. |
8 |
COLLADO F J , GUALLAR J . Campo: generation of regular heliostat fields[J]. Renewable Energy, 2012, 46, 49- 59.
DOI |
9 |
LEONARDI E , D'AGUANNO B . CRS4-2: a numerical code for the calculation of the solar power collected in a central receiver system[J]. Energy, 2011, 36 (8): 4828- 4837.
DOI |
10 |
SCHRAMEK P , MILLS D R , STEIN W , et al. Design of the heliostat field of the CSIRO solar tower[J]. Journal of Solar Energy Engineering, 2009, 131 (2): 024505.
DOI |
11 | SANCHEZ M , ROMERO M . Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces[J]. Solar Energy, 2005, 80 (7): 861- 874. |
12 | NOONE C J , TORRILHON M , MITSOS A . Heliostat field optimization: a new computationally efficient model and biomimetic layout[J]. Solar Energy, 2011, 86 (2): 792- 803. |
13 | ALDULAIMI R K M , SÖYLEMEZ M S . Performance analysis of multilevel heliostat field layout[J]. Turkish Journal of Science & Technology, 2016, 11 (2): 11- 20. |
14 |
CÁDIZ P , FRASQUET M , SILVA M , et al. Shadowing and blocking effect optimization for a variable geometry heliostat field[J]. Energy Procedia, 2015, 69, 60- 69.
DOI |
15 |
CARRIZOSA E , DOMÍNGUEZ-BRAVO C , Fernández-Cara E , et al. A heuristic method for simultaneous tower and pattern-free field optimization on solar power systems[J]. Computers and Operations Research, 2015, 57, 109- 122.
DOI |
16 |
YANG S , LEE K , LEE I . Pattern-free heliostat field layout optimization using physics-based gradient[J]. Solar Energy, 2020, 206, 722- 731.
DOI |
17 |
SIALA F M F , ELAYEB M E . Mathematical formulation of a graphical method for a no-blocking heliostat field layout[J]. Renewable Energy, 2001, 23 (1): 77- 92.
DOI |
18 |
WAGNER M J , WENDELIN T . SolarPILOT: a power tower solar field layout and characterization tool[J]. Solar Energy, 2018, 171, 185- 196.
DOI |
19 | 曹传胜. 塔式太阳能热发电站性能的影响因素研究[J]. 太阳能学报, 2020, 41 (10): 223- 228. |
CAO C S . Investigation of influence factors on the performance on the solar power tower plants[J]. Acta Energiae Solaris Sinica, 2020, 41 (10): 223- 228. | |
20 |
WANG J X , DUAN L Q , YANG Y P . An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field[J]. Energy, 2018, 155, 15- 28.
DOI |
21 | 林修文. 塔式太阳能热发电站仿真[D]. 成都: 西南交通大学, 2016. |
LIN X W. The visual simulation of solar power tower[D]. Chengdu: Southwest Jiaotong University, 2016. | |
22 | 程小龙. 基于光学效率的塔式电站镜场布局优化设计研究[D]. 合肥: 合肥工业大学, 2018. |
CHENG X L. Study on the optimal of heliostat field layout for solar power tower plant[D]. Hefei: Hefei University of Technology, 2018. | |
23 | 李心, 许粲羚, 纪培栋, 等. 塔式光热电站集热场设计综述及经济性研究[J]. 南方能源建设, 2020, 7 (2): 51- 59. |
LI X , XU C L , JI P D , et al. Review and economic research on solar field design of solar tower plants[J]. Southern Energy Construction, 2020, 7 (2): 51- 59. | |
24 |
宓霄凌, 王伊娜, 李建华, 等. 塔式太阳能热发电站镜场设计分析[J]. 太阳能, 2016, (6): 61- 65.
DOI |
MI X L , WANG Y N , LI J H , et al. Design analysis of solar power tower plant[J]. Solar Energy, 2016, (6): 61- 65.
DOI |
|
25 | 王凯丽, 朱慧君. 塔式太阳能热发电镜场的边界优化[J]. 热能动力工程, 2020, 35 (7): 201- 206. |
WANG K L , ZHU H J . Boundary optimization of tower solar thermal power generation heliostat[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (7): 201- 206. | |
26 | 李雅雯. 塔式太阳能定日镜场聚光系统控制策略研究[D]. 北京: 华北电力大学, 2019. |
LI Y W. Study on control strategy of light concentration system in heliostat field of solar tower power plant[D]. Beijing: North China Electric Power University, 2019. | |
27 | KISTLER B L. A user's manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants[R]. Albuquerque, New Mexico: Sandia, 1986. |
28 |
REDA I , ANDEREAS A . Solar position algorithm for solar radiation application[J]. Solar Energy, 2004, 76 (5): 577- 589.
DOI |
[1] | 董军, 汤建方, 臧春城, 徐立, 王志峰. 抛物面槽式太阳能集热器球形接头测试系统的研制与应用[J]. 发电技术, 2024, 45(2): 291-298. |
[2] | 徐立, 孙飞虎, 李钧, 张强强. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术, 2023, 44(2): 229-234. |
[3] | 徐运飞, 吴水木, 李英杰. 面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J]. 发电技术, 2022, 43(5): 740-747. |
[4] | 徐立, 孙飞虎, 李志, 张强强. 一种太阳能集热器流体平均温度计算方法[J]. 发电技术, 2022, 43(3): 405-412. |
[5] | 廖志荣, 李朋达, 田紫芊, 徐超, 魏高升. 非均匀翅片对级联相变储热系统热性能强化的研究[J]. 发电技术, 2022, 43(1): 83-91. |
[6] | 丁路, 肖欣悦, 奚正稳, 华文瀚. 塔式太阳能吸热器不同方位高空风速模拟计算及影响分析[J]. 发电技术, 2021, 42(6): 707-714. |
[7] | 刘兰华, 狄林文, 董兴万, 王瑞林. 抛物槽式聚光太阳能集热回路动态特性研究[J]. 发电技术, 2021, 42(6): 673-681. |
[8] | 徐立, 孙飞虎, 李钧, 张强强. 流量对抛物面槽式太阳能集热器传热特性影响的实验分析[J]. 发电技术, 2021, 42(6): 665-672. |
[9] | 刘兰华, 王瑞林, 洪慧. 塔式太阳能辅助燃气蒸汽联合循环钙基碳捕集系统设计[J]. 发电技术, 2021, 42(4): 517-524. |
[10] | 王泽众, 黄平瑞, 魏高升, 崔柳, 徐超, 杜小泽. 太阳能热发电固–气两相化学储热技术研究进展[J]. 发电技术, 2021, 42(2): 238-246. |
[11] | 刘尧东, 张燕平, 万亮, 高伟. 基于Al2O3纳米流体的槽式太阳能热发电集热器传热建模及性能分析[J]. 发电技术, 2021, 42(2): 230-237. |
[12] | 郑开云. 超临界二氧化碳循环发电技术应用[J]. 发电技术, 2020, 41(4): 399-406. |
[13] | 张哲旸,巨星,潘信宇,杨宇,徐超,杜小泽. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41(3): 220-230. |
[14] | 佟锴,杨立军,宋记锋,杜小泽,杨勇平. 聚光太阳能集热场先进技术综述[J]. 发电技术, 2019, 40(5): 413-425. |
[15] | 布鲁斯·安德森,黄湘,孙海翔,王福华. 新型布雷登塔式太阳能热发电系统[J]. 发电技术, 2018, 39(1): 37-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||