发电技术 ›› 2024, Vol. 45 ›› Issue (6): 1095-1104.DOI: 10.12096/j.2096-4528.pgt.23024
• 发电及环境保护 • 上一篇
张东青1, 金铁铮1, 张磊2
收稿日期:
2023-03-02
修回日期:
2023-07-23
出版日期:
2024-12-31
发布日期:
2024-12-30
作者简介:
基金资助:
Dongqing ZHANG1, Tiezheng JIN1, Lei ZHANG2
Received:
2023-03-02
Revised:
2023-07-23
Published:
2024-12-31
Online:
2024-12-30
Supported by:
摘要:
目的 在碳达峰、碳中和背景下,火电机组节能提效是电力行业低碳转型的关键,通过冷端优化提高机组的运行经济性是行之有效的方法之一,因此,对冷端系统进行宽负荷优化非常必要。 方法 以宁海电厂1 000 MW机组的冷端系统为研究对象,建立了湿式自然通风冷却塔的计算模型,开发了对应的软件模块,可根据环境温度、湿度和大气压力数据,实现冷却塔-循环泵组-凝汽器-汽轮机组的耦合计算。以实际环境参数和运行负荷为变量,开展了冷却塔运行曲线、循环水泵泵组工频与变频运行对比、机组冷端综合优化等研究。 结果 循环水泵变频的最大节能率接近50%;当环境温度约低于31 ℃时,可以通过调整循环水流量降低煤耗率;环境温度越低,煤耗率收益越大,平均煤耗率可降低2.0 g/(kW⋅h)以上,但不同工况的煤耗收益差异非常大。 结论 研究结果可为机组冷端优化节能提供参考。
中图分类号:
张东青, 金铁铮, 张磊. 基于循环水泵变频的1 000 MW超超临界机组冷端综合优化[J]. 发电技术, 2024, 45(6): 1095-1104.
Dongqing ZHANG, Tiezheng JIN, Lei ZHANG. Comprehensive Optimization of the Cold End of 1 000 MW Ultra-Supercritical Unit Based on Pump Frequency Conversion[J]. Power Generation Technology, 2024, 45(6): 1095-1104.
入塔水温 | 出塔水温 |
---|---|
26.0 | 22.05 |
26.5 | 22.25 |
27.0 | 22.44 |
27.5 | 22.62 |
28.0 | 22.80 |
28.5 | 22.97 |
29.0 | 23.14 |
29.5 | 23.31 |
30.0 | 23.47 |
30.5 | 23.62 |
31.0 | 23.77 |
31.5 | 23.91 |
32.0 | 24.05 |
32.5 | 24.18 |
33.0 | 24.31 |
33.5 | 24.44 |
34.0 | 24.55 |
34.5 | 24.67 |
35.0 | 24.77 |
表1 循环水量为27 600 kg/s时的冷却塔性能数据 (℃)
Tab. 1 Cooling tower performance data with circulating water flow fixed at 27 600 kg/s
入塔水温 | 出塔水温 |
---|---|
26.0 | 22.05 |
26.5 | 22.25 |
27.0 | 22.44 |
27.5 | 22.62 |
28.0 | 22.80 |
28.5 | 22.97 |
29.0 | 23.14 |
29.5 | 23.31 |
30.0 | 23.47 |
30.5 | 23.62 |
31.0 | 23.77 |
31.5 | 23.91 |
32.0 | 24.05 |
32.5 | 24.18 |
33.0 | 24.31 |
33.5 | 24.44 |
34.0 | 24.55 |
34.5 | 24.67 |
35.0 | 24.77 |
循环水量/(t/h) | 出塔水温/℃ |
---|---|
18 600 | 21.86 |
19 600 | 22.07 |
20 600 | 22.26 |
21 600 | 22.46 |
22 600 | 22.64 |
23 600 | 22.82 |
24 600 | 22.99 |
25 600 | 23.16 |
26 600 | 23.32 |
27 600 | 23.47 |
表2 入塔水温为30 ℃时的冷却塔性能数据
Tab. 2 Cooling tower performance data with water temperature entering the tower fixed at 30 ℃
循环水量/(t/h) | 出塔水温/℃ |
---|---|
18 600 | 21.86 |
19 600 | 22.07 |
20 600 | 22.26 |
21 600 | 22.46 |
22 600 | 22.64 |
23 600 | 22.82 |
24 600 | 22.99 |
25 600 | 23.16 |
26 600 | 23.32 |
27 600 | 23.47 |
循环水流量/(t/h) | 2机2定频泵 | 2机1变频泵 1定频泵 | 2机2变频泵 | ||
---|---|---|---|---|---|
功耗/kW | 功耗/kW | 变频比 | 功耗/kW | 变频比 | |
42 000 | — | — | — | 2 640 | 0.800 |
44 000 | — | — | — | 2 810 | 0.815 |
46 000 | — | — | — | 2 992 | 0.833 |
48 000 | 4 988 | 3 256 | 0.758 | 3 183 | 0.851 |
50 000 | 5 005 | 3 404 | 0.782 | 3 385 | 0.870 |
52 000 | 5 017 | 3 575 | 0.809 | 3 598 | 0.890 |
54 000 | 5 023 | 3 769 | 0.839 | 3 821 | 0.909 |
56 000 | 5 009 | 3 895 | 0.871 | 4 053 | 0.930 |
58 000 | 4 966 | 4 218 | 0.906 | 4 293 | 0.950 |
60 000 | 4 903 | 4 463 | 0.942 | 4 541 | 0.970 |
62 000 | 4 828 | 4 722 | 0.979 | 4 798 | 0.989 |
64 000 | 4 862 | 4 998 | 1.000 | 5 068 | 1.000 |
表3 2机2泵运行时循环水泵变频和运行方式对耗功的影响
Tab. 3 Influence of frequency conversion and operation mode on water pump power consumption when 2 units and 2 pumps are running
循环水流量/(t/h) | 2机2定频泵 | 2机1变频泵 1定频泵 | 2机2变频泵 | ||
---|---|---|---|---|---|
功耗/kW | 功耗/kW | 变频比 | 功耗/kW | 变频比 | |
42 000 | — | — | — | 2 640 | 0.800 |
44 000 | — | — | — | 2 810 | 0.815 |
46 000 | — | — | — | 2 992 | 0.833 |
48 000 | 4 988 | 3 256 | 0.758 | 3 183 | 0.851 |
50 000 | 5 005 | 3 404 | 0.782 | 3 385 | 0.870 |
52 000 | 5 017 | 3 575 | 0.809 | 3 598 | 0.890 |
54 000 | 5 023 | 3 769 | 0.839 | 3 821 | 0.909 |
56 000 | 5 009 | 3 895 | 0.871 | 4 053 | 0.930 |
58 000 | 4 966 | 4 218 | 0.906 | 4 293 | 0.950 |
60 000 | 4 903 | 4 463 | 0.942 | 4 541 | 0.970 |
62 000 | 4 828 | 4 722 | 0.979 | 4 798 | 0.989 |
64 000 | 4 862 | 4 998 | 1.000 | 5 068 | 1.000 |
循环水流量/(t/h) | 2机3定频泵 | 2机1变频泵2定频泵 | 2机2变频泵1定频泵 | 2机3变频泵 | |||
---|---|---|---|---|---|---|---|
功耗/kW | 功耗/kW | 变频比 | 功耗/kW | 变频比 | 功耗/kW | 变频比 | |
56 000 | — | — | — | — | — | 3 936 | 0.800 |
58 000 | — | — | — | — | — | 4 121 | 0.811 |
60 000 | — | — | — | — | — | 4 314 | 0.823 |
62 000 | — | — | — | — | — | 4 519 | 0.835 |
64 000 | — | — | — | 4 954 | 0.800 | 4 737 | 0.848 |
66 000 | 7 434 | 5 760 | 0.736 | 5 121 | 0.812 | 4 963 | 0.861 |
68 000 | 7 449 | 5 867 | 0.763 | 5 302 | 0.828 | 5 198 | 0.874 |
70 000 | 7 466 | 5 992 | 0.788 | 5 498 | 0.845 | 5 442 | 0.888 |
72 000 | 7 483 | 6 124 | 0.805 | 5 718 | 0.863 | 5 705 | 0.902 |
74 000 | 7 502 | 6 259 | 0.817 | 5 956 | 0.881 | 5 979 | 0.916 |
76 000 | 7 514 | 6 410 | 0.834 | 6 207 | 0.90 | 6 260 | 0.930 |
78 000 | 7 525 | 6 597 | 0.861 | 6 477 | 0.920 | 6 556 | 0.944 |
80 000 | 7 532 | 6 820 | 0.893 | 6 763 | 0.941 | 6 860 | 0.959 |
82 000 | 7 538 | 7 083 | 0.930 | 7 066 | 0.962 | 7 174 | 0.974 |
84 000 | 7 513 | 7 392 | 0.971 | 7 391 | 0.985 | 7 507 | 0.990 |
86 000 | 7 475 | 7 736 | 1.000 | 7 733 | 1.000 | 7 851 | 1.000 |
表4 2机3泵运行时循环水泵变频和运行方式对耗功的影响
Tab. 4 Influence of frequency conversion and operation mode on water pump power consumption when 2 units and 3 pumps are running
循环水流量/(t/h) | 2机3定频泵 | 2机1变频泵2定频泵 | 2机2变频泵1定频泵 | 2机3变频泵 | |||
---|---|---|---|---|---|---|---|
功耗/kW | 功耗/kW | 变频比 | 功耗/kW | 变频比 | 功耗/kW | 变频比 | |
56 000 | — | — | — | — | — | 3 936 | 0.800 |
58 000 | — | — | — | — | — | 4 121 | 0.811 |
60 000 | — | — | — | — | — | 4 314 | 0.823 |
62 000 | — | — | — | — | — | 4 519 | 0.835 |
64 000 | — | — | — | 4 954 | 0.800 | 4 737 | 0.848 |
66 000 | 7 434 | 5 760 | 0.736 | 5 121 | 0.812 | 4 963 | 0.861 |
68 000 | 7 449 | 5 867 | 0.763 | 5 302 | 0.828 | 5 198 | 0.874 |
70 000 | 7 466 | 5 992 | 0.788 | 5 498 | 0.845 | 5 442 | 0.888 |
72 000 | 7 483 | 6 124 | 0.805 | 5 718 | 0.863 | 5 705 | 0.902 |
74 000 | 7 502 | 6 259 | 0.817 | 5 956 | 0.881 | 5 979 | 0.916 |
76 000 | 7 514 | 6 410 | 0.834 | 6 207 | 0.90 | 6 260 | 0.930 |
78 000 | 7 525 | 6 597 | 0.861 | 6 477 | 0.920 | 6 556 | 0.944 |
80 000 | 7 532 | 6 820 | 0.893 | 6 763 | 0.941 | 6 860 | 0.959 |
82 000 | 7 538 | 7 083 | 0.930 | 7 066 | 0.962 | 7 174 | 0.974 |
84 000 | 7 513 | 7 392 | 0.971 | 7 391 | 0.985 | 7 507 | 0.990 |
86 000 | 7 475 | 7 736 | 1.000 | 7 733 | 1.000 | 7 851 | 1.000 |
循环水流量/(t/h) | 2机4定频泵 | 2机2变频泵2定频泵 | 2机4变频泵 | ||
---|---|---|---|---|---|
功耗/kW | 功耗/kW | 变频比 | 功耗/kW | 变频比 | |
66 000 | — | — | — | 5 301 | 0.805 |
68 000 | — | — | — | 5 501 | 0.814 |
70 000 | 9 552 | 6 813 | 0.754 | 5 708 | 0.824 |
72 000 | 9 611 | 6 958 | 0.771 | 5 934 | 0.834 |
74 000 | 9 670 | 7 117 | 0.788 | 6 170 | 0.845 |
76 000 | 9 723 | 7 279 | 0.803 | 6 411 | 0.856 |
78 000 | 9 773 | 7 447 | 0.818 | 6 665 | 0.866 |
80 000 | 9 804 | 7 615 | 0.831 | 6 927 | 0.877 |
82 000 | 9 836 | 7 781 | 0.842 | 7 198 | 0.888 |
84 000 | 9 865 | 7 960 | 0.853 | 7 488 | 0.900 |
86 000 | 9 897 | 8 145 | 0.863 | 7 788 | 0.911 |
88 000 | 9 911 | 8 339 | 0.874 | 8 092 | 0.923 |
90 000 | 9 928 | 8 557 | 0.888 | 9 412 | 0.934 |
92 000 | 9 942 | 8 796 | 0.905 | 8 745 | 0.946 |
94 000 | 9 959 | 9 062 | 0.924 | 9 092 | 0.958 |
96 000 | 9 977 | 9 361 | 0.946 | 9 454 | 0.971 |
98 000 | 10 000 | 9 688 | 0.968 | 9 823 | 0.983 |
100 000 | 10 009 | 10 049 | 0.992 | 10 205 | 0.996 |
表5 2机4泵运行时循环水泵变频和运行方式对耗功的影响
Tab. 5 Influence of frequency conversion and operation mode on water pump power consumption when 2 units and 4 pumps are running
循环水流量/(t/h) | 2机4定频泵 | 2机2变频泵2定频泵 | 2机4变频泵 | ||
---|---|---|---|---|---|
功耗/kW | 功耗/kW | 变频比 | 功耗/kW | 变频比 | |
66 000 | — | — | — | 5 301 | 0.805 |
68 000 | — | — | — | 5 501 | 0.814 |
70 000 | 9 552 | 6 813 | 0.754 | 5 708 | 0.824 |
72 000 | 9 611 | 6 958 | 0.771 | 5 934 | 0.834 |
74 000 | 9 670 | 7 117 | 0.788 | 6 170 | 0.845 |
76 000 | 9 723 | 7 279 | 0.803 | 6 411 | 0.856 |
78 000 | 9 773 | 7 447 | 0.818 | 6 665 | 0.866 |
80 000 | 9 804 | 7 615 | 0.831 | 6 927 | 0.877 |
82 000 | 9 836 | 7 781 | 0.842 | 7 198 | 0.888 |
84 000 | 9 865 | 7 960 | 0.853 | 7 488 | 0.900 |
86 000 | 9 897 | 8 145 | 0.863 | 7 788 | 0.911 |
88 000 | 9 911 | 8 339 | 0.874 | 8 092 | 0.923 |
90 000 | 9 928 | 8 557 | 0.888 | 9 412 | 0.934 |
92 000 | 9 942 | 8 796 | 0.905 | 8 745 | 0.946 |
94 000 | 9 959 | 9 062 | 0.924 | 9 092 | 0.958 |
96 000 | 9 977 | 9 361 | 0.946 | 9 454 | 0.971 |
98 000 | 10 000 | 9 688 | 0.968 | 9 823 | 0.983 |
100 000 | 10 009 | 10 049 | 0.992 | 10 205 | 0.996 |
日期 | 环境温度/℃ | 环境湿度/% | 100%负荷 | 75%负荷 | 50%负荷 | |||
---|---|---|---|---|---|---|---|---|
最佳背压/kPa | 循环水量/(t/h) | 最佳背压/kPa | 循环水量/(t/h) | 最佳背压/kPa | 循环水量/(t/h) | |||
01.01—01.15 | 7.8 | 55.5 | 4.7/8.3 | 36 000 | 3.5/5.4 | 36 000 | 2.7/3.9 | 35 000 |
01.16—01.31 | 7.0 | 67.5 | 4.5/7.8 | 38 000 | 3.5/5.5 | 38 000 | 2.6/3.7 | 37 000 |
02.01—02.14 | 5.5 | 49.3 | 4.2/7.4 | 38 000 | 3.4/5.6 | 34 000 | 2.5/3.7 | 33 000 |
02.15—02.28 | 9.8 | 68.6 | 4.7/7.8 | 42 000 | 3.7/5.6 | 42 000 | 2.8/3.9 | 42 000 |
03.01—03.15 | 14.5 | 59.3 | 4.8/7.5 | 50 000 | 4.0/5.7 | 50 000 | 3.2/4.1 | 50 000 |
03.16—03.31 | 14.9 | 62.6 | 4.8/7.4 | 55 000 | 4.0/5.5 | 55 000 | 3.2/4.1 | 53 000 |
04.01—04.15 | 19.2 | 56.0 | 5.2/7.4 | 65 000 | 4.4/5.9 | 62 000 | 3.6/4.5 | 60 000 |
04.16—04.30 | 21.4 | 54.2 | 5.4/7.4 | 73 000 | 4.6/5.9 | 70 000 | 3.9/4.7 | 68 000 |
05.01—05.15 | 24.3 | 56.9 | 5.9/7.8 | 83 000 | 5.1/6.4 | 80 000 | 4.3/5.1 | 78 000 |
05.16—05.31 | 25.4 | 66.6 | 6.3/8.2 | 90 000 | 5.4/6.7 | 88 000 | 4.7/5.5 | 87 000 |
06.01—06.15 | 25.1 | 62.2 | 6.0/7.7 | 93 000 | 5.2/6.4 | 92 000 | 4.5/5.2 | 92 000 |
06.16—06.30 | 28.7 | 63.1 | 6.9/8.8 | 94 000 | 6.0/7.3 | 93 000 | 5.3/6.1 | 93 000 |
07.01—07.15 | 30.9 | 60.5 | 7.3/9.2 | 97 000 | 6.4/7.7 | 97 000 | 5.6/6.4 | 97 000 |
07.16—07.31 | 31.4 | 59.4 | 7.4/9.2 | 100 000 | 6.5/7.8 | 100 000 | 5.7/6.5 | 100 000 |
08.01—08.15 | 31.4 | 60.1 | 7.4/9.3 | 100 000 | 6.5/7.8 | 100 000 | 5.7/6.5 | 100 000 |
08.16—08.31 | 30.9 | 59.5 | 9.0/7.2 | 100 000 | 6.4/7.6 | 100 000 | 5.6/6.4 | 100 000 |
09.01—09.15 | 28.2 | 61.5 | 6.7/8.6 | 95 000 | 5.9/7.1 | 95 000 | 5.1/5.9 | 95 000 |
09.16—09.30 | 26.5 | 61.9 | 6.4/8.2 | 92 000 | 5.5/6.7 | 92 000 | 4.8/5.5 | 91 000 |
10.01—10.15 | 21.1 | 54.5 | 5.2/7.0 | 83 000 | 4.5/5.6 | 83 000 | 3.8/4.5 | 81 000 |
10.16—10.31 | 19.1 | 58.0 | 5.1/6.9 | 70 000 | 4.3/5.6 | 70 000 | 3.6/4.3 | 69 000 |
11.01—11.15 | 17.0 | 69.9 | 5.1/7.4 | 63 000 | 4.3/5.8 | 60 000 | 3.5/4.4 | 58 000 |
11.16—11.30 | 14.4 | 71.1 | 5.0/7.6 | 53 000 | 4.0/5.7 | 53 000 | 3.3/4.2 | 51 000 |
12.01—12.15 | 11.4 | 70.3 | 4.6/7.2 | 50 000 | 3.8/5.7 | 45 000 | 3.0/4.0 | 45 000 |
12.16—12.31 | 10.3 | 62.0 | 4.6/7.4 | 45 000 | 3.7/5.5 | 43 000 | 2.8/3.8 | 43 000 |
表6 宁海1 000 MW机组最佳运行背压和循环水量
Tab. 6 Optimal operating back pressure and circulating water flow of Ninghai 1 000 MW unit
日期 | 环境温度/℃ | 环境湿度/% | 100%负荷 | 75%负荷 | 50%负荷 | |||
---|---|---|---|---|---|---|---|---|
最佳背压/kPa | 循环水量/(t/h) | 最佳背压/kPa | 循环水量/(t/h) | 最佳背压/kPa | 循环水量/(t/h) | |||
01.01—01.15 | 7.8 | 55.5 | 4.7/8.3 | 36 000 | 3.5/5.4 | 36 000 | 2.7/3.9 | 35 000 |
01.16—01.31 | 7.0 | 67.5 | 4.5/7.8 | 38 000 | 3.5/5.5 | 38 000 | 2.6/3.7 | 37 000 |
02.01—02.14 | 5.5 | 49.3 | 4.2/7.4 | 38 000 | 3.4/5.6 | 34 000 | 2.5/3.7 | 33 000 |
02.15—02.28 | 9.8 | 68.6 | 4.7/7.8 | 42 000 | 3.7/5.6 | 42 000 | 2.8/3.9 | 42 000 |
03.01—03.15 | 14.5 | 59.3 | 4.8/7.5 | 50 000 | 4.0/5.7 | 50 000 | 3.2/4.1 | 50 000 |
03.16—03.31 | 14.9 | 62.6 | 4.8/7.4 | 55 000 | 4.0/5.5 | 55 000 | 3.2/4.1 | 53 000 |
04.01—04.15 | 19.2 | 56.0 | 5.2/7.4 | 65 000 | 4.4/5.9 | 62 000 | 3.6/4.5 | 60 000 |
04.16—04.30 | 21.4 | 54.2 | 5.4/7.4 | 73 000 | 4.6/5.9 | 70 000 | 3.9/4.7 | 68 000 |
05.01—05.15 | 24.3 | 56.9 | 5.9/7.8 | 83 000 | 5.1/6.4 | 80 000 | 4.3/5.1 | 78 000 |
05.16—05.31 | 25.4 | 66.6 | 6.3/8.2 | 90 000 | 5.4/6.7 | 88 000 | 4.7/5.5 | 87 000 |
06.01—06.15 | 25.1 | 62.2 | 6.0/7.7 | 93 000 | 5.2/6.4 | 92 000 | 4.5/5.2 | 92 000 |
06.16—06.30 | 28.7 | 63.1 | 6.9/8.8 | 94 000 | 6.0/7.3 | 93 000 | 5.3/6.1 | 93 000 |
07.01—07.15 | 30.9 | 60.5 | 7.3/9.2 | 97 000 | 6.4/7.7 | 97 000 | 5.6/6.4 | 97 000 |
07.16—07.31 | 31.4 | 59.4 | 7.4/9.2 | 100 000 | 6.5/7.8 | 100 000 | 5.7/6.5 | 100 000 |
08.01—08.15 | 31.4 | 60.1 | 7.4/9.3 | 100 000 | 6.5/7.8 | 100 000 | 5.7/6.5 | 100 000 |
08.16—08.31 | 30.9 | 59.5 | 9.0/7.2 | 100 000 | 6.4/7.6 | 100 000 | 5.6/6.4 | 100 000 |
09.01—09.15 | 28.2 | 61.5 | 6.7/8.6 | 95 000 | 5.9/7.1 | 95 000 | 5.1/5.9 | 95 000 |
09.16—09.30 | 26.5 | 61.9 | 6.4/8.2 | 92 000 | 5.5/6.7 | 92 000 | 4.8/5.5 | 91 000 |
10.01—10.15 | 21.1 | 54.5 | 5.2/7.0 | 83 000 | 4.5/5.6 | 83 000 | 3.8/4.5 | 81 000 |
10.16—10.31 | 19.1 | 58.0 | 5.1/6.9 | 70 000 | 4.3/5.6 | 70 000 | 3.6/4.3 | 69 000 |
11.01—11.15 | 17.0 | 69.9 | 5.1/7.4 | 63 000 | 4.3/5.8 | 60 000 | 3.5/4.4 | 58 000 |
11.16—11.30 | 14.4 | 71.1 | 5.0/7.6 | 53 000 | 4.0/5.7 | 53 000 | 3.3/4.2 | 51 000 |
12.01—12.15 | 11.4 | 70.3 | 4.6/7.2 | 50 000 | 3.8/5.7 | 45 000 | 3.0/4.0 | 45 000 |
12.16—12.31 | 10.3 | 62.0 | 4.6/7.4 | 45 000 | 3.7/5.5 | 43 000 | 2.8/3.8 | 43 000 |
日期 | 环境温度/℃ | 环境湿度/% | 煤耗率/[g/(kW∙h)] | |||||
---|---|---|---|---|---|---|---|---|
100%负荷 | 75%负荷 | 50%负荷 | ||||||
变频优化 | 工频运行 | 变频优化 | 工频运行 | 变频优化 | 工频运行 | |||
01.01—01.15 | 7.8 | 55.5 | 294.2 | 301.2* | 289.0 | 298.3* | 295.9 | 303.4* |
01.16—01.31 | 7.0 | 67.5 | 293.9 | 301.5* | 289.0 | 298.5* | 295.9 | 303.4* |
02.01—02.14 | 5.5 | 49.3 | 294.5 | 308.5* | 289.7 | 308.5* | 296.1 | 311.4* |
02.15—02.28 | 9.8 | 68.6 | 293.7 | 296.9 | 288.8 | 292.8 | 296.0 | 298.6 |
03.01—03.15 | 14.5 | 59.3 | 293.4 | 293.8 | 288.9 | 292.2 | 297.0 | 299.1 |
03.16—03.31 | 14.9 | 62.6 | 293.4 | 296.2 | 289.0 | 291.6 | 297.3 | 299.0 |
04.01—04.15 | 19.2 | 56.0 | 293.5 | 294.1 | 289.7 | 290.2 | 299.5 | 300.1 |
04.16—04.30 | 21.4 | 54.2 | 293.8 | 293.9 | 290.4 | 290.5 | 301.2 | 301.5 |
05.01—05.15 | 24.3 | 56.9 | 294.8 | 295.0 | 292.0 | 292.5 | 304.4 | 305.6 |
05.16—05.31 | 25.4 | 66.6 | 295.7 | 295.8 | 293.6 | 293.9 | 307.1 | 307.9 |
06.01—06.15 | 25.1 | 62.2 | 295.3 | 295.4 | 293.1 | 293.3 | 306.5 | 307.0 |
06.16—06.30 | 28.7 | 63.1 | 297.6 | 297.5 | 296.2 | 296.2 | 311.0 | 311.4 |
07.01—07.15 | 30.9 | 60.5 | 298.9 | 298.8 | 298.0 | 298.0 | 313.5 | 313.6 |
07.16—07.31 | 31.4 | 59.4 | 299.1 | 299.0 | 298.4 | 298.3 | 314.2 | 314.1 |
08.01—08.15 | 31.4 | 60.1 | 299.2 | 299.2 | 298.5 | 298.4 | 314.3 | 314.2 |
08.16—08.31 | 30.9 | 59.5 | 298.7 | 298.6 | 297.9 | 297.8 | 313.5 | 313.4 |
09.01—09.15 | 28.2 | 61.5 | 297.1 | 297.2 | 295.5 | 295.4 | 310.0 | 309.6 |
09.16—09.30 | 26.5 | 61.9 | 296.0 | 296.1 | 294.0 | 294.0 | 307.9 | 307.5 |
10.01—10.15 | 21.1 | 54.5 | 293.9 | 293.9 | 290.4 | 290.5 | 301.2 | 301.3 |
10.16—10.31 | 19.1 | 58.0 | 293.6 | 294.1 | 289.7 | 290.2 | 299.7 | 300.1 |
11.01—11.15 | 17.0 | 69.9 | 293.5 | 294.4 | 289.5 | 290.3 | 298.9 | 299.6 |
11.16—11.30 | 14.4 | 71.1 | 293.4 | 296.0 | 289.0 | 291.5 | 297.5 | 299.0 |
12.01—12.15 | 11.4 | 70.3 | 293.5 | 300.8* | 288.8 | 295.5* | 296.4 | 300.5* |
12.16—12.31 | 10.3 | 62.0 | 293.5 | 304.1* | 288.8 | 299.7* | 296.0 | 303.0* |
表7 宁海1 000 MW机组循环水泵工频运行与变频优化煤耗率对比
Tab. 7 Comparison of coal consumption rate of Ninghai 1 000 MW unit with constant frequency operation and frequency conversion optimization of circulating water pump
日期 | 环境温度/℃ | 环境湿度/% | 煤耗率/[g/(kW∙h)] | |||||
---|---|---|---|---|---|---|---|---|
100%负荷 | 75%负荷 | 50%负荷 | ||||||
变频优化 | 工频运行 | 变频优化 | 工频运行 | 变频优化 | 工频运行 | |||
01.01—01.15 | 7.8 | 55.5 | 294.2 | 301.2* | 289.0 | 298.3* | 295.9 | 303.4* |
01.16—01.31 | 7.0 | 67.5 | 293.9 | 301.5* | 289.0 | 298.5* | 295.9 | 303.4* |
02.01—02.14 | 5.5 | 49.3 | 294.5 | 308.5* | 289.7 | 308.5* | 296.1 | 311.4* |
02.15—02.28 | 9.8 | 68.6 | 293.7 | 296.9 | 288.8 | 292.8 | 296.0 | 298.6 |
03.01—03.15 | 14.5 | 59.3 | 293.4 | 293.8 | 288.9 | 292.2 | 297.0 | 299.1 |
03.16—03.31 | 14.9 | 62.6 | 293.4 | 296.2 | 289.0 | 291.6 | 297.3 | 299.0 |
04.01—04.15 | 19.2 | 56.0 | 293.5 | 294.1 | 289.7 | 290.2 | 299.5 | 300.1 |
04.16—04.30 | 21.4 | 54.2 | 293.8 | 293.9 | 290.4 | 290.5 | 301.2 | 301.5 |
05.01—05.15 | 24.3 | 56.9 | 294.8 | 295.0 | 292.0 | 292.5 | 304.4 | 305.6 |
05.16—05.31 | 25.4 | 66.6 | 295.7 | 295.8 | 293.6 | 293.9 | 307.1 | 307.9 |
06.01—06.15 | 25.1 | 62.2 | 295.3 | 295.4 | 293.1 | 293.3 | 306.5 | 307.0 |
06.16—06.30 | 28.7 | 63.1 | 297.6 | 297.5 | 296.2 | 296.2 | 311.0 | 311.4 |
07.01—07.15 | 30.9 | 60.5 | 298.9 | 298.8 | 298.0 | 298.0 | 313.5 | 313.6 |
07.16—07.31 | 31.4 | 59.4 | 299.1 | 299.0 | 298.4 | 298.3 | 314.2 | 314.1 |
08.01—08.15 | 31.4 | 60.1 | 299.2 | 299.2 | 298.5 | 298.4 | 314.3 | 314.2 |
08.16—08.31 | 30.9 | 59.5 | 298.7 | 298.6 | 297.9 | 297.8 | 313.5 | 313.4 |
09.01—09.15 | 28.2 | 61.5 | 297.1 | 297.2 | 295.5 | 295.4 | 310.0 | 309.6 |
09.16—09.30 | 26.5 | 61.9 | 296.0 | 296.1 | 294.0 | 294.0 | 307.9 | 307.5 |
10.01—10.15 | 21.1 | 54.5 | 293.9 | 293.9 | 290.4 | 290.5 | 301.2 | 301.3 |
10.16—10.31 | 19.1 | 58.0 | 293.6 | 294.1 | 289.7 | 290.2 | 299.7 | 300.1 |
11.01—11.15 | 17.0 | 69.9 | 293.5 | 294.4 | 289.5 | 290.3 | 298.9 | 299.6 |
11.16—11.30 | 14.4 | 71.1 | 293.4 | 296.0 | 289.0 | 291.5 | 297.5 | 299.0 |
12.01—12.15 | 11.4 | 70.3 | 293.5 | 300.8* | 288.8 | 295.5* | 296.4 | 300.5* |
12.16—12.31 | 10.3 | 62.0 | 293.5 | 304.1* | 288.8 | 299.7* | 296.0 | 303.0* |
日期 | 环境温度/℃ | 环境湿度/% | 节煤率/[g/(kW∙h)] | ||
---|---|---|---|---|---|
100%负荷 | 75%负荷 | 50%负荷 | |||
01.01—01.15 | 7.8 | 55.5 | 7.0 | 9.3 | 7.5 |
01.16—01.31 | 7.0 | 67.5 | 7.6 | 9.5 | 7.5 |
02.01—02.14 | 5.5 | 49.3 | 14.0 | 18.8 | 15.3 |
02.15—02.28 | 9.8 | 68.6 | 3.2 | 4.0 | 2.6 |
03.01—03.15 | 14.5 | 59.3 | 0.4 | 3.3 | 2.1 |
03.16—03.31 | 14.9 | 62.6 | 2.8 | 2.6 | 1.7 |
04.01—04.15 | 19.2 | 56.0 | 0.6 | 0.5 | 0.6 |
04.16—04.30 | 21.4 | 54.2 | 0.1 | 0.1 | 0.3 |
05.01—05.15 | 24.3 | 56.9 | 0.2 | 0.5 | 1.2 |
05.16—05.31 | 25.4 | 66.6 | 0.1 | 0.3 | 0.8 |
06.01—06.15 | 25.1 | 62.2 | 0.1 | 0.2 | 0.5 |
06.16—06.30 | 28.7 | 63.1 | -0.1 | 0 | 0.4 |
07.01—07.15 | 30.9 | 60.5 | -0.1 | 0 | 0.1 |
07.16—07.31 | 31.4 | 59.4 | -0.1 | -0.1 | -0.1 |
08.01—08.15 | 31.4 | 60.1 | 0 | -0.1 | -0.1 |
08.16—08.31 | 30.9 | 59.5 | -0.1 | -0.1 | -0.1 |
09.01—09.15 | 28.2 | 61.5 | 0.1 | -0.1 | -0.4 |
09.16—09.30 | 26.5 | 61.9 | 0.1 | 0 | -0.4 |
10.01—10.15 | 21.1 | 54.5 | 0 | 0.1 | 0.1 |
10.16—10.31 | 19.1 | 58.0 | 0.5 | 0.5 | 0.4 |
11.01—11.15 | 17.0 | 69.9 | 0.9 | 0.8 | 0.7 |
11.16—11.30 | 14.4 | 71.1 | 2.6 | 2.5 | 1.5 |
12.01—12.15 | 11.4 | 70.3 | 7.3 | 6.7 | 4.1 |
12.16—12.31 | 10.3 | 62.0 | 10.6 | 10.9 | 7.0 |
表8 宁海1 000 MW机组循环水泵变频及冷端优化节煤率
Tab. 8 Circulating water pump frequency conversion and cold end optimization coal saving rate of Ninghai 1 000 MW unit
日期 | 环境温度/℃ | 环境湿度/% | 节煤率/[g/(kW∙h)] | ||
---|---|---|---|---|---|
100%负荷 | 75%负荷 | 50%负荷 | |||
01.01—01.15 | 7.8 | 55.5 | 7.0 | 9.3 | 7.5 |
01.16—01.31 | 7.0 | 67.5 | 7.6 | 9.5 | 7.5 |
02.01—02.14 | 5.5 | 49.3 | 14.0 | 18.8 | 15.3 |
02.15—02.28 | 9.8 | 68.6 | 3.2 | 4.0 | 2.6 |
03.01—03.15 | 14.5 | 59.3 | 0.4 | 3.3 | 2.1 |
03.16—03.31 | 14.9 | 62.6 | 2.8 | 2.6 | 1.7 |
04.01—04.15 | 19.2 | 56.0 | 0.6 | 0.5 | 0.6 |
04.16—04.30 | 21.4 | 54.2 | 0.1 | 0.1 | 0.3 |
05.01—05.15 | 24.3 | 56.9 | 0.2 | 0.5 | 1.2 |
05.16—05.31 | 25.4 | 66.6 | 0.1 | 0.3 | 0.8 |
06.01—06.15 | 25.1 | 62.2 | 0.1 | 0.2 | 0.5 |
06.16—06.30 | 28.7 | 63.1 | -0.1 | 0 | 0.4 |
07.01—07.15 | 30.9 | 60.5 | -0.1 | 0 | 0.1 |
07.16—07.31 | 31.4 | 59.4 | -0.1 | -0.1 | -0.1 |
08.01—08.15 | 31.4 | 60.1 | 0 | -0.1 | -0.1 |
08.16—08.31 | 30.9 | 59.5 | -0.1 | -0.1 | -0.1 |
09.01—09.15 | 28.2 | 61.5 | 0.1 | -0.1 | -0.4 |
09.16—09.30 | 26.5 | 61.9 | 0.1 | 0 | -0.4 |
10.01—10.15 | 21.1 | 54.5 | 0 | 0.1 | 0.1 |
10.16—10.31 | 19.1 | 58.0 | 0.5 | 0.5 | 0.4 |
11.01—11.15 | 17.0 | 69.9 | 0.9 | 0.8 | 0.7 |
11.16—11.30 | 14.4 | 71.1 | 2.6 | 2.5 | 1.5 |
12.01—12.15 | 11.4 | 70.3 | 7.3 | 6.7 | 4.1 |
12.16—12.31 | 10.3 | 62.0 | 10.6 | 10.9 | 7.0 |
1 | 中能传媒研究院 .中国能源大数据报告(2022)[R].北京:中能传媒研究院,2022. |
Zhongneng Media Research Institute .China energy big data report (2022)[R].Beijing:Zhongneng Media Research Institute,2022. | |
2 | 冯伟忠,李励 .“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 |
FENG W Z, LI L .Research and practice on development path of low-carbon, zero-carbon and negative carbon transformation of coal-fired power units under “double carbon” targets[J].Power Generation Technology,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 | |
3 | 朱法华,徐静馨,潘超,等 .煤电在碳中和目标实现中的机遇与挑战[J].电力科技与环保,2022,38(2):79-86. |
ZHU F H, XU J X, PAN C,et al .Opportunities and challenges of coal power industry in the achievement of car-bon neutrality goal[J].Electric Power Technology and Environmental Protection,2022,38(2):79-86. | |
4 | 高恬,牛东晓,纪正森,等 .双碳目标下基于分解-集成的月度煤电需求预测研究[J].智慧电力,2022,50(9):22-29. |
GAO T, NIU D X, JI Z S,et al .Monthly coal power demand forecasting based on decomposition-integration under carbon peak & carbon neutrality goals[J].Smat Power,2022,50(9):22-29. | |
5 | 张兴平,何澍,王泽嘉,等 .不同新能源渗透率下燃煤机组行为策略分析[J].电力建设,2022,43(5):9-17. doi:10.12204/j.issn.1000-7229.2022.05.002 |
ZHANG X P, HE S, WANG Z J,et al .Behavior strategy of coal-fired units under different new energy penetration rate[J].Electric Power Construction,2022,43(5):9-17. doi:10.12204/j.issn.1000-7229.2022.05.002 | |
6 | 李政,陈思源,董文娟,等 .碳约束条件下电力行业低碳转型路径研究[J].中国电机工程学报,2021,41(12):3987-4000. doi:10.13334/j.0258-8013.pcsee.210671 |
LI Z, CHEN S Y, DONG W J,et al .Low carbon transition pathway of power sector under carbon emission constraints[J].Proceedings of the CSEE,2021,41(12):3987-4000. doi:10.13334/j.0258-8013.pcsee.210671 | |
7 | 周鑫,程松,任景,等 .含储热型热电联产机组的电力系统源荷联合优化调峰方法[J].电力科学与技术学报,2023,38(5):12-21. |
ZHOU X, CHEGN S, REN J,et al .A source-load joint optimization peak regulation method of power system with heat storage combined heat and power units[J].Journal of Electric Power Science and Technology,2023,38(5):12-21. | |
8 | 于国强,刘克天,胡尊民,等 .大规模新能源并网下火电机组深度调峰优化调度[J].电力工程技术,2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 |
YU G Q, LIU K T, HU Z M,et al .Optimal scheduling of deep peak regulation for thermal power units in power grid with large-scale new energy[J]. Electric Power Engineering Technology,2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 | |
9 | 李秀云,严俊杰,林万超 .火电厂冷端系统评价指标及诊断方法的研究[J].中国电机工程学报,2001,21(9):94-98. |
LI X Y, YAN J J, LIN W C .Study on thermo-economics diagnosis method and index evaluation system for the cold-end system in steam power unit[J].Proceedings of the CSEE,2001,21(9):94-98. | |
10 | 闫桂焕,顾昌,郑李坤 .300 MW机组循环水系统优化运行的研究[J].汽轮机技术,2002,44(6):345-347. |
YAN G H, GU C, ZHENG L K .Research on optimal operation of circulating water system of 300 MW unit[J].Turbine Technology,2002,44(6):345-347. | |
11 | 赵斌,刘玲,张文兵 .汽轮机冷端优化的研究[J].热力透平,2007,36(1):19-23. doi:10.3969/j.issn.1672-5549.2007.01.005 |
ZHAO B, LIU L, ZHANG W B .Optimization for steam turbine cold end system[J].Thermal Turbine,2007,36(1):19-23. doi:10.3969/j.issn.1672-5549.2007.01.005 | |
12 | 马立恒,王运民 .火电厂凝汽式汽轮机冷端运行优化研究[J].汽轮机技术,2010,52(2):137-140. |
MA L H, WANG Y M .Study on the running optimization for condensing steam turbine cold end in thermal power plant[J].Turbine Technology,2010,52(2):137-140. | |
13 | 王玮,曾德良,杨婷婷,等 .基于凝汽器压力估计算法的循环水泵最优运行[J].中国电机工程学报,2010,30(14):7-12. |
WANG W, ZENG D L, YANG T T,et al .The optimum running of circulating water pumps based on estimated condenser pressure[J].Proceedings of the CSEE,2010,30(14):7-12. | |
14 | 赵伟光,刘明远,王丰,等 .国产超临界600 MW汽轮机冷端优化运行方式的确定[J].东北电力技术,2015,36(6):1-3. |
ZHAO W G, LIU M Y, WANG F,et al .Determination of cold-end optimization operation for domestic supercritical 600 MW steam turbine[J].Northeast Electric Power Technology,2015,36(6):1-3. | |
15 | 刘吉臻,王玮,曾德良,等 .火电机组定速循环水泵的全工况运行优化[J].动力工程学报,2011,31(9):682-688. |
LIU J Z, WANG W, ZENG D L,et al .Operation optimization of constant-speed circulating water pumps in a thermal power plant under full conditions[J].Journal of Chinese Society of Power Engineering,2011,31(9):682-688. | |
16 | 黄新元,赵丽,安越里,等 .火电厂单元制循环水系统离散优化模型及其应用[J].热能动力工程,2004,19(3):302-305. |
HUANG X Y, ZHAO L, AN Y L,et al .A discrete optimized model for the monobloc configured circulating water system of a thermal power plant and its applications[J].Journal of Engineering for Thermal Energy and Power,2004,19(3):302-305. | |
17 | 陈云,李森,赵元宾 .基于凝汽器负挖的电厂直流式冷端系统优化研究[J].发电技术,2022,43(4):655-663. |
CHEN Y, LI S, ZHAO Y B .Optimization study of power plant direct flow cold-end subsystem based on negative digging[J].Power Generation Technology,2022,43(4):655-663. | |
18 | 刘桂生,马骏驰,丁平,等 .循环水泵电动机双速改造[J].热力发电,2008,37(2):66-67. |
LIU G S, MA J C, DING P,et al .Retrofitting electric motor of circulating water pump into a double-speed one[J].Thermal Power Generation,2008,37(2):66-67. | |
19 | 张营 .循环水泵双速改造并联运行经济性分析[J].华电技术,2009,31(11):3-5. |
ZHANG Y .Economical analysis of two-speed reformation and parallel operation of water circulating pumps[J].Huadian Technology,2009,31(11):3-5. | |
20 | 李放 .350 MW 机组中循环水泵电机高低速改造研究[D].长春:吉林大学,2016. |
LI F .Research on high-low speed transformation of middle circulation water pump motor in 350 MW unit[D].Changchun:Jilin University,2016,2016 | |
21 | 瞿伟明 .600 MW机组循环水泵变频改造后运行方式优化[J].发电设备,2012,26(3):183-185. |
QU W M .Operation optimization of the circulating pump for a 600 MW power unit after its frequency conversion retrofit[J].Power Equipment,2012,26(3):183-185. | |
22 | 瞿伟明 .600 MW机组循环水泵高压变频调速系统的工程应用及效果分析[D].上海:上海交通大学,2012. |
QU W M .Engineering application and effect analysis of high-pressure frequency conversion speed regulation system for circulating water pump of 600 MW unit[D].Shanghai:Shanghai Jiaotong University,2012. | |
23 | 沈发荣,赵明,崔海波,等 .循环水泵计算模型及节能分析[J].热力发电,2018,47(3):12-17. |
SHEN F R, ZHAO M, CUI H B,et al .Calculation model and energy saving analysis of circulating water pump[J].Thermal Power Generation,2018,47(3):12-17. | |
24 | 朱艳梅,李士超 .循环水泵采用变频泵及双速泵的调节研究[J].电力勘测设计,2020(7):47-53. |
ZHU Y M, LI S C .Study of circulating water pump with variable frequency pump and dual rate pump[J].Electric Power Survey & Design,2020(7):47-53. | |
25 | 张磊,张俊杰,王顺森,等 .煤基分布式能源技术研究与经济性分析[J].节能技术,2021,39(5):403-406. |
ZHANG L, ZHANG J J, WANG S S,et al .Coal-based distributed energy technology research and economic analysis[J].Energy Conservation Technology,2021,39(5):403-406. | |
26 | 梁占伟,张磊,徐亚涛,等 .高背压供热机组供热温度特性与㶲分析[J].热力发电,2020,49(1):17-25. |
LIANG Z W, ZHANG L, XU Y T,et al .Heating temperature characteristics and exergy analysis for high back pressure heating unit[J].Thermal Power Generation,2020,49(1):17-25. | |
27 | 梁占伟,杨承刚,张磊,等 .基于单耗理论的抽汽耦合高背压供热优化[J].中国电力,2019,52(12):171-178. |
LIANG Z W, YANG C G, ZHANG L,et al .Optimization of steam extraction combined high back pressure heating based on specific consumption theory[J].Electric Power,2019,52(12):171-178. |
[1] | 解婷婷, 孙友源, 郭振, 宋明光. 火电机组碳排放连续监测技术研究与应用综述[J]. 发电技术, 2024, 45(5): 919-928. |
[2] | 夏忠林, 陈文通, 许书峤, 吴忠胜, 谢强, 马双忱, 马京香. 火电厂烟塔合一技术应用现状与现存问题分析[J]. 发电技术, 2024, 45(4): 590-599. |
[3] | 丁湧. 1 000 MW超超临界燃煤锅炉深度调峰研究[J]. 发电技术, 2024, 45(3): 382-391. |
[4] | 邓启刚, 吕卓, 石友, 鲁佳易, 周旭, 王奥宇, 杨冬. 不带外置床的700 MW超超临界循环流化床锅炉失电后水冷壁安全计算分析[J]. 发电技术, 2024, 45(2): 240-249. |
[5] | 王若为, 李音璇, 葛维春, 张诗钽, 刘闯, 楚帅. 沙漠光伏电能外送技术综述[J]. 发电技术, 2024, 45(1): 32-41. |
[6] | 李延兵, 贾树旺, 张军亮, 符悦, 刘明, 严俊杰. 汽轮机高位布置超超临界燃煤发电系统变工况㶲经济性分析[J]. 发电技术, 2024, 45(1): 69-78. |
[7] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[8] | 张宁, 朱昊, 杨凌霄, 胡存刚. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633. |
[9] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[10] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[11] | 许洪华, 邵桂萍, 鄂春良, 郭金东. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
[12] | 张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究[J]. 发电技术, 2023, 44(2): 143-154. |
[13] | 黄宇箴, 陈彦奇, 吴志聪, 徐钢, 刘彤. 碳中和背景下热电联产机组抽汽分配节能优化[J]. 发电技术, 2023, 44(1): 85-93. |
[14] | 安留明, 安吉振, 刘一帆, 徐钢, 李季. 600 MW直接空冷凝汽器变工况特性研究[J]. 发电技术, 2022, 43(6): 935-941. |
[15] | 董瑞, 高林, 何松, 杨东泰. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4): 523-532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||