发电技术 ›› 2023, Vol. 44 ›› Issue (2): 143-154.DOI: 10.12096/j.2096-4528.pgt.22092
• 发电及环境保护 • 下一篇
张全斌1, 周琼芳2
收稿日期:
2022-05-05
出版日期:
2023-04-30
发布日期:
2023-04-28
作者简介:
基金资助:
Quanbin ZHANG1, Qiongfang ZHOU2
Received:
2022-05-05
Published:
2023-04-30
Online:
2023-04-28
Supported by:
摘要:
火力发电是中国最主要的电力来源和CO2排放来源,火力发电行业的CO2减排是顺利实现“碳达峰、碳中和”目标的重要保证。为了探究“双碳”背景下中国火力发电技术发展路径,结合中国火力发电行业发展历程以及中长期电力消费结构展望,预测中国火力发电技术将从注重高参数、高效率向调峰灵活性转变。针对超高参数火力发电技术、灵活性调峰技术,以及整合煤气化联合循环发电(integrated gasification combined cycle,IGCC)/煤气化燃料电池(integrated gasification fuel cell,IGFC)联合循环技术进行了探讨和研究,发现超高参数火力发电技术发展受限于耐高温材料,灵活性改造能有效延展火力发电技术的生命周期,认为IGCC/IGFC发电技术是兼具高效率、灵活性的洁净煤发电技术,并提出煤气(油)电一体化能源基地的应用场景。展望2060年,建议加强煤气化/净化技术、燃料电池发电技术、IGFC系统集成控制技术的研发,助力中国顺利实现碳中和。
中图分类号:
张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究[J]. 发电技术, 2023, 44(2): 143-154.
Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization”[J]. Power Generation Technology, 2023, 44(2): 143-154.
1 | 姜明军,任明远,陈思行,等 .基于“双碳”目标的电能替代研究现状及潜力分析[J].电气时代,2022(1):69-72. |
JIANG M J, REN M Y, CHEN S X,et al .Research status and potential analysis of electric energy substitution based on “double carbon” goal[J].Electric Age,2022(1):69-72. | |
2 | 杨勇平,杨志平,徐钢,等 .中国火力发电能耗状况及展望[J].中国电机工程学报,2013,33(23):1-11. |
YANG Y P, YANG Z P, XU G,et al .Situation and prospect of energy consumption for China’s thermal power generation[J].Proceedings of the CSEE,2013,33(23):1-11. | |
3 | 中国电力企业联合会 .中国电力行业年度发展报告2021[M].北京:中国建材工业出版社,2021. |
China Federation of Electric Power Enterprises .Annual development report of China electric power industry 2021[M].Beijing:China Building Materials Industry Press,2021. | |
4 | 张全斌,周琼芳 .“双碳”目标下中国能源CO2减排路径研究[J].中国国土资源经济,2022,35(4):22-30. |
ZHANG Q B, ZHOU Q F .Research on China’s energy CO2 emission reduction path under the goal of “carbon peak and neutrality”[J].Natural Resource Economics of China,2022,35(4):22-30. | |
5 | 中外能源编辑部 .2021年底前7国集团终止国家对煤电厂投资[J].中外能源,2021,26(9):96. |
Editorial Department of Sino-Global Energy .The group of seven countries will terminate national investment in coal-fired power plants by the end of 2021[J].Sino-Global Energy,2021,26(9):96. | |
6 | 杨勤明 .中国火电建设发展史(1)[J].电力建设,2008,29(1):98-101. doi:10.3969/j.issn.1000-7229.2008.01.036 |
YANG Q M .Development history of thermal power construction in China(1)[J].Electric Power Construc-tion,2008,29(1):98-101. doi:10.3969/j.issn.1000-7229.2008.01.036 | |
7 | 王倩,王卫良,刘敏,等 .超(超)临界燃煤发电技术发展与展望[J].热力发电,2021,50(2):1-9. doi:10.19666/j.rlfd.202007179 |
WANG Q, WANG W L, LIU M,et al .Development and prospect of (ultra) supercritical coal-fired power generation technology[J].Thermal Power Generation,2021,50(2):1-9. doi:10.19666/j.rlfd.202007179 | |
8 | 赵敏,张卫国,俞立中 .上海市能源消费碳排放分析[J].环境科学研究,2009,22(8):984-989. doi:JournalArticle/5af3f844c095d718d8144292 |
ZHAO M, ZHANG W G, YU L Z .Carbon emissions from energy consumption in Shanghai city[J].Research of Environmental Sciences,2009,22(8):984-989. doi:JournalArticle/5af3f844c095d718d8144292 | |
9 | 郑开云 .超临界二氧化碳循环发电技术应用[J].发电技术,2020,41(4):399-406. doi:10.12096/j.2096-4528.pgt.19057 |
ZHENG K Y .Application of supercritical carbon dioxide cycle power generation technology[J].Power Generation Technology,2020,41(4):399-406. doi:10.12096/j.2096-4528.pgt.19057 | |
10 | 郑开云 .低温场景超临界CO2循环燃煤发电系统研究[J].发电技术,2022,43(1):126-130. |
ZHENG K Y .Study on supercritical CO2 cycle coal-fired power generation system for low temperature scenario[J].Power Generation Technology,2022,43(1):126-130. | |
11 | 中华人民共和国自然资源部 .中国矿产资源报告2021[M].北京:地质出版社,2019. |
Ministry of Natural Resources of the People’s Republic of China .China mineral resources report 2021[M].Beijing:Geological Publishing House,2019. | |
12 | 胡鞍钢 .中国实现2030年前碳达峰目标及主要途径[J].北京工业大学学报(社会科学版),2021,21(3):1-15. |
HU A G .China’s goal of achieving carbon peak by 2030 and its main approaches[J].Journal of Beijing University of Technology (Social Sciences Edition),2021,21(3):1-15. | |
13 | 张全斌 .基于零碳排放模式的氢气储能应用场景展望[J].分布式能源,2021,6(4):56-62. |
ZHANG Q B .Perspective on application scenario of hydrogen energy storage based on zero carbon emission[J].Distributed Energy,2021,6(4):56-62. | |
14 | 张全斌,周琼芳 .基于“碳中和”的氢能应用场景与发展趋势展望[J].中国能源,2021,43(7):81-88. |
ZHANG Q B, ZHOU Q F .Perspective on application scenario and development trend of hydrogen energy based on carbon neutralization[J].Energy of China,2021,43(7):81-88. | |
15 | 王月明,姚明宇,张一帆,等 .煤电的低碳化发展路径研究[J].热力发电,2022,51(1):11-20. |
WANG Y M, YAO M Y, ZHANG Y F,et al .Study on low-carbon development path of coal-fired power generation[J].Thermal Power Generation,2022,51(1):11-20. | |
16 | 闫伟华,彭恒 .燃气轮机发电技术发展动态与趋势[J].电站系统工程,2020,36(4):21-24. |
YAN W H, PENG H .Technology development status and trends of gas turbine power generation[J].Power System Engineering,2020,36(4):21-24. | |
17 | 孙旭东,张博,彭苏萍 .我国洁净煤技术2035发展趋势与战略对策研究[J].中国工程科学,2020,22(3):132-140. doi:10.15302/j-sscae-2020.03.021 |
SUN X D, ZHANG B, PENG S P .Development trend and strategic countermeasures of clean coal technology in China toward 2035[J].Strategic Study of CAE,2020,22(3):132-140. doi:10.15302/j-sscae-2020.03.021 | |
18 | 张晓鲁 .关于加快发展我国先进超超临界燃煤发电技术的战略思考[J].中国工程科学,2013,15(4):91-95. doi:10.3969/j.issn.1009-1742.2013.04.016 |
ZHANG X L .Some consideration about the future development strategy of advanced ultra supercritical coal-fired power generation[J].Strategic Study of CAE,2013,15(4):91-95. doi:10.3969/j.issn.1009-1742.2013.04.016 | |
19 | 刘正东,陈正宗,何西扣,等 .630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J].金属学报,2020,56(4):539-548. doi:10.11900/0412.1961.2019.00419 |
LIU Z D, CHEN Z Z, HE X K,et al .Systematical innovation of heat resistant materials used for 630~700 ℃ advanced ultra-supercritical (A-USC) fossil fired boilers[J].Acta Metallurgica Sinica,2020,56(4):539-548. doi:10.11900/0412.1961.2019.00419 | |
20 | 蒋洪德,任静,李雪英,等 .重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102. |
JIANG H D, REN J, LI X Y, et a .Status and development trend of the heavy duty gas turbine[J].Proceedings of the CSEE,2014,34(29):5096-5102. | |
21 | MECHERI M, MOULLEC Y L .Supercritical CO2 Brayton cycles for coal-fired power plants[J].Energy,2016,103:758-771. doi:10.1016/j.energy.2016.02.111 |
22 | 潘尔生,田雪沁,徐彤,等 .火电灵活性改造的现状、关键问题与发展前景[J].电力建设,2020,41(9):58-68. doi:10.12204/j.issn.1000-7229.2020.09.007 |
PAN E S, TIAN X Q, XU T,et al .Status, critical problems and prospects of flexibility retrofit of thermal power in China[J].Electric Power Construction,2020,41(9):58-68. doi:10.12204/j.issn.1000-7229.2020.09.007 | |
23 | 袁家海,徐燕,纳春宁 .煤电清洁高效利用现状与展望[J].煤炭经济研究,2017,37(12):18-24. |
YUAN J H, XU Y, NA C N .Clean and high efficient utilization status and outlook of coal and electric power[J].Coal Economic Research,2017,37(12):18-24. | |
24 | 谢俊,白兴忠,甘德强 .水电/火电机组调峰能力的评估与激励[J].浙江大学学报(工学版),2009,43(11):2079-2084. doi:10.3785/j.issn.1008-973X.2009.11.025 |
XIE J, BAI X Z, GAN D Q .Evaluation and incentive mechanism of peaking capability of hydroelectric/thermoelectric generators[J].Journal of Zhejiang University (Engineering Science),2009,43(11):2079-2084. doi:10.3785/j.issn.1008-973X.2009.11.025 | |
25 | 谭政宇,陈仕军,黄炜斌,等 .基于飞蛾火焰优化算法的火电调峰负荷分配研究[J].电网与清洁能源,2021,37(4):47-52. doi:10.3969/j.issn.1674-3814.2021.04.007 |
TAN Z Y, CHEN S J, HUANG W B,et al .Research on peak load distribution of thermal power based on moth flame optimization algorithm[J].Power System and Clean Energy,2021,37(4):47-52. doi:10.3969/j.issn.1674-3814.2021.04.007 | |
26 | 虞国平,张新胜,屠海彪,等 .火电机组深度调峰工况辅机安全控制技术研究[J].浙江电力,2021,40(2):85-90. doi:10.19585/j.zjdl.202102015 |
YU G P, ZHANG X S, TU H B,et al .Research on auxiliary equipment control technology under operating condition of deep peak-regulation of thermal power generating units[J].Zhejiang Electric Power,2021,40(2):85-90. doi:10.19585/j.zjdl.202102015 | |
27 | 张松岩,苗世洪,尹斌鑫,等 .考虑火电深度调峰的多类型储能经济性分析[J].电力建设,2022,43(1):132-142. doi:10.12204/j.issn.1000-7229.2022.01.015 |
ZHAGN D Y, MIAO S H, YIN B X,et al .Economic analysis of multi-type energy storages considering the deep peak-regulation of thermal power units[J].Electric Power Construction,2022,43(1):132-142. doi:10.12204/j.issn.1000-7229.2022.01.015 | |
28 | 牟春华,居文平,黄嘉驷,等 .火电机组灵活性运行技术综述与展望[J].热力发电,2018,47(5):1-7. |
MU C H, JU W P, HUANG J S,et al .Review and prospect of technologies of enhancing the flexibility of thermal power units[J].Thermal Power Generation,2018,47(5):1-7. | |
29 | 帅永,赵斌,蒋东方,等 .中国燃煤高效清洁发电技术现状与展望[J].热力发电,2022,51(1):1-10. |
SHUAI Y, ZHAO B, JIANG D F,et al .Status and prospect of coal-fired high efficiency and clean power generation technology in China[J].Thermal Power Generation,2022,51(1):1-10. | |
30 | 张国柱,张钧泰,李亚维,等 .燃煤发电机组深度调峰运行的能耗特性分析[J].电力建设,2017,38(10):56-61. doi:10.3969/j.issn.1000-7229.2017.10.008 |
ZHANG G Z, ZHANG J T, LI Y W,et al .Energy consumption characteristics analysis on a coal-fired power plant operating in deep peaking mode[J].Electric Power Construction,2017,38(10):56-61. doi:10.3969/j.issn.1000-7229.2017.10.008 | |
31 | 林俐,邹兰青,周鹏,等 .规模风电并网条件下火电机组深度调峰的多角度经济性分析[J].电力系统自动化,2017,41(7):21-27. doi:10.7500/AEPS20160719005 |
LIN L, ZOU L Q, ZHOU P,et al .Multi-angle economic analysis on deep peak regulation of thermal power units with large-scale wind power integration[J].Automation of Electric Power Systems,2017,41(7):21-27. doi:10.7500/AEPS20160719005 | |
32 | 胡建根,童家麟,茅建波,等 .典型燃煤锅炉深度调峰能力比较研究[J].锅炉技术,2019,50(6):59-64. doi:10.3969/j.issn.1672-4763.2019.06.012 |
HU J G, TONG J L, MAO J B,et al .The research of the comparison of deep peak regulation capacity for typical coal-fired boilers[J].Boiler Technology,2019,50(6):59-64. doi:10.3969/j.issn.1672-4763.2019.06.012 | |
33 | 侯玉婷,李晓博,刘畅,等 .火电机组灵活性改造形势及技术应用[J].热力发电,2018,47(5):8-13. |
HOU Y T, LI X B, LIU C,et al .Flexibility reform situation and technical application of thermal power units[J].Thermal Power Generation,2018,47(5):8-13. | |
34 | 龙辉,黄晶晶 .“十三五”燃煤发电设计技术发展方向分析[J].发电技术,2018,39(1):13-17. doi:10.12096/j.2096-4528.pgt.2018.002 |
LONG H, HUANG J J .Development direction analysis of coal-fired power units’ design technology during the 13th Five-Year Plan[J].Power Generation Technology,2018,39(1):13-17. doi:10.12096/j.2096-4528.pgt.2018.002 | |
35 | 李树明,刘青松,朱小东,等 .350 MW超临界热电联产机组灵活性改造分析[J].发电技术,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 |
LI S M, LIU Q S, ZHU X D,et al .Flexibility transformation analysis of 350 MW supercritical cogeneration unit[J].Power Generation Technology,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 | |
36 | 刘云锋,李宇峰,王健,等 .汽轮机深度调峰的水蚀问题研究[J].发电技术,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 |
LIU Y F, LI Y F, WANG J,et al .Study on water erosion in deep peak shaving of steam turbine[J].Power Generation Technology,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 | |
37 | 王林,伍刚,张亚夫,等 .1 000 MW深度调峰机组热力系统优化研究[J].发电技术,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 |
WANG L, WU G, ZHANG Y F,et al .Thermo-dynamic system optimization research on 1 000 MW deep peak-regulating unit[J].Power Generation Technology,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 | |
38 | LCY A,HAI X,ATA C .Future scenarios of variable renewable energies and flexibility requirements for thermal power plants in China[J].Energy,2019,167:708-714. doi:10.1016/j.energy.2018.10.174 |
39 | 高春辉,肖冰,尹宏学,等 .新能源背景下储能参与火电调峰及配置方式综述[J].热力发电,2019,48(10):38-43. |
GAO C H, XIAO B, YIN H X,et al .Energy storage participating in thermal power peaking and configuration in background of new energy:a review[J].Thermal Power Generation,2019,48(10):38-43. | |
40 | 白尊亮 .中美日典型IGCC电站对比研究[J].中外能源,2021,26(5):9-15. |
BAI Z L .Comparative study on typical IGCC power stations in China,USA and Japan[J].Sino-Global Energy,2021,26(5):9-15. | |
41 | 安航,周贤,彭烁,等 .煤气化燃料电池发电技术研究进展[J].热力发电,2021,50(11):20-26. |
AN H, ZHOU X, PENG S,et al .Research progress on integrated gasification fuel cell power generation technology[J].Thermal Power Generation,2021,50(11):20-26. | |
42 | 曹静,王小博,孙翔,等 .基于固体氧化物燃料电池的高效清洁发电系统[J].南方能源建设,2020,7(2):28-34. |
CAO J, WANG X B, SUN X,et al .High-efficiency clean power generation system based on solid oxide fuel cell[J].Southern Energy Construction,2020,7(2):28-34. | |
43 | 王琦,杨志宾,李初福,等 .整体煤气化燃料电池联合发电(IGFC)技术研究进展[J].洁净煤技术,2022,28(1):77-83. |
WANG Q, YANG Z B, LI C F,et al .Research progress of integrated coal gasification fuel cell combined power generation (IGFC) technology[J].Clean Coal Technology,2022,28(1):77-83. | |
44 | 李元姣,王玉璋,翁史烈 .整体煤气化固体氧化物燃料电池电热联产系统分析[J].科学技术与工程,2013,13(12):3271-3275. doi:10.3969/j.issn.1671-1815.2013.12.010 |
LI Y J, WANG Y Z, WENG S L .Performance analysis of IGFC-GT hybrid power generation system[J].Science Technology and Engineering,2013,13(12):3271-3275. doi:10.3969/j.issn.1671-1815.2013.12.010 | |
45 | 张绍强 .中国煤炭清洁高效利用的实践与展望[J].科技导报,2016,34(17):56-63. |
ZHANG S Q .Practice and prospect of clean and high efficient utilization of coal in China[J].Science & Technology Review,2016,34(17):56-63. |
[1] | 蒋海威, 高明明, 李杰, 于浩洋, 岳光溪, 黄中. 生物质振动炉排炉燃烧过程建模及动态特性分析[J]. 发电技术, 2024, 45(2): 250-259. |
[2] | 王若为, 李音璇, 葛维春, 张诗钽, 刘闯, 楚帅. 沙漠光伏电能外送技术综述[J]. 发电技术, 2024, 45(1): 32-41. |
[3] | 李延兵, 贾树旺, 张军亮, 符悦, 刘明, 严俊杰. 汽轮机高位布置超超临界燃煤发电系统变工况㶲经济性分析[J]. 发电技术, 2024, 45(1): 69-78. |
[4] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[5] | 张宁, 朱昊, 杨凌霄, 胡存刚. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633. |
[6] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[7] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[8] | 许洪华, 邵桂萍, 鄂春良, 郭金东. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
[9] | 苏靖程, 王志强, 屈江江, 张凯. 基于BP神经网络和支持向量回归的燃煤电厂空气预热器压差预测[J]. 发电技术, 2023, 44(4): 550-556. |
[10] | 安吉振, 郑福豪, 刘一帆, 陈衡, 徐钢. 基于大数据分析的火电机组引风机故障预警研究[J]. 发电技术, 2023, 44(4): 557-564. |
[11] | 黄宇箴, 陈彦奇, 吴志聪, 徐钢, 刘彤. 碳中和背景下热电联产机组抽汽分配节能优化[J]. 发电技术, 2023, 44(1): 85-93. |
[12] | 董瑞, 高林, 何松, 杨东泰. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4): 523-532. |
[13] | 余潇, 卜广全, 王姗姗. 风电经柔直孤岛送出交流暂态过电压抑制策略研究[J]. 发电技术, 2022, 43(4): 618-625. |
[14] | 冯伟忠, 李励. “双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J]. 发电技术, 2022, 43(3): 452-461. |
[15] | 高虎, 刘凡, 李海. 碳中和目标下氨燃料的机遇、挑战及应用前景[J]. 发电技术, 2022, 43(3): 462-467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||