发电技术 ›› 2022, Vol. 43 ›› Issue (4): 544-561.DOI: 10.12096/j.2096-4528.pgt.22081
李振山1, 陈虎1, 李维成1,2, 刘磊1, 蔡宁生1
收稿日期:
2022-04-21
出版日期:
2022-08-31
发布日期:
2022-09-06
作者简介:
基金资助:
Zhenshan LI1, Hu CHEN1, Weicheng LI1,2, Lei LIU1, Ningsheng CAI1
Received:
2022-04-21
Published:
2022-08-31
Online:
2022-09-06
Supported by:
摘要:
化学链燃烧技术具有CO2内分离和显著降低NO x 生产的优势。反应器是载氧体氧化还原与燃料转化的重要场所。从反应器型式、物料循环方式和设计理论3方面,分析了当前化学链燃烧中试系统的研究现状。目前,国际上已建立了热输入功率为10~3 000 kW的化学链装置,技术成熟度为6级,其中空气反应器和燃料反应器均采用流化床的串行双流化床工艺是化学链燃烧反应器的主流技术路线。此外,化学链中试装置的系统循环流率普遍低于25.5 kg/(m2·s),导致难以实现自热运行。最后,介绍了高效炭颗粒分离、高通量循环流率化学链燃烧装置及反应器系统设计理论等相关工作的最新进展。
中图分类号:
李振山, 陈虎, 李维成, 刘磊, 蔡宁生. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561.
Zhenshan LI, Hu CHEN, Weicheng LI, Lei LIU, Ningsheng CAI. Research Status and Prospect of Chemical Looping Combustion Pilot Systems[J]. Power Generation Technology, 2022, 43(4): 544-561.
床型 | 研究机构 | 热输入 功率/kW | 反应器尺寸/m |
---|---|---|---|
移动床 | 俄亥俄州立大学[ | 25 | — |
喷动床 | 东南大学 | 10 | L=0.23;W=0.04;Ht=1.5 |
鼓泡床 | 查尔姆斯科技大学 | 10 | L=0.08;W=0.225;Ht=3.32 |
鼓泡床 | 法国石油研究院 | 10 | Dt=0.13;Ht=1.0 |
鼓泡床 | 斯图加特大学 | 10 | Dt=0.15;Ht=3.5 |
鼓泡床 | 清华大学 | 30 | Dt=0.07;Ht=3.8 |
复合床 | 西班牙煤炭研究所 | 50 | Dt=0.102, 0.081;Ht=4.73 |
复合床 | 华中科技大学 | 50 | Dt=0.3, 0.06;Ht=6.1 |
复合床 | 维也纳科技大学 | 100 | L=0.56;W=0.49;Dt=0.128;Ht=4.36 |
快速床 | 查尔姆斯科技大学 | 100 | Dt=0.154;Ht=4.0 |
快速床 | 犹他州立大学 | 200 | Dt=0.26;Ht=5.6 |
快速床 | 达姆斯塔特工业大学 | 1 000 | Dt=0.4;Ht=11.35 |
快速床 | 阿尔斯通公司 | 3 000 | Ht=18.3 |
复合床 | 清华大学、东方锅炉[ | 1 500 | Ht=10.45 |
复合床 | 清华大学、东方锅炉[ | 5 000 | Ht=25.5 |
表1 燃料反应器类型
Tab. 1 Types of fuel reactor
床型 | 研究机构 | 热输入 功率/kW | 反应器尺寸/m |
---|---|---|---|
移动床 | 俄亥俄州立大学[ | 25 | — |
喷动床 | 东南大学 | 10 | L=0.23;W=0.04;Ht=1.5 |
鼓泡床 | 查尔姆斯科技大学 | 10 | L=0.08;W=0.225;Ht=3.32 |
鼓泡床 | 法国石油研究院 | 10 | Dt=0.13;Ht=1.0 |
鼓泡床 | 斯图加特大学 | 10 | Dt=0.15;Ht=3.5 |
鼓泡床 | 清华大学 | 30 | Dt=0.07;Ht=3.8 |
复合床 | 西班牙煤炭研究所 | 50 | Dt=0.102, 0.081;Ht=4.73 |
复合床 | 华中科技大学 | 50 | Dt=0.3, 0.06;Ht=6.1 |
复合床 | 维也纳科技大学 | 100 | L=0.56;W=0.49;Dt=0.128;Ht=4.36 |
快速床 | 查尔姆斯科技大学 | 100 | Dt=0.154;Ht=4.0 |
快速床 | 犹他州立大学 | 200 | Dt=0.26;Ht=5.6 |
快速床 | 达姆斯塔特工业大学 | 1 000 | Dt=0.4;Ht=11.35 |
快速床 | 阿尔斯通公司 | 3 000 | Ht=18.3 |
复合床 | 清华大学、东方锅炉[ | 1 500 | Ht=10.45 |
复合床 | 清华大学、东方锅炉[ | 5 000 | Ht=25.5 |
床型 | 研究机构 | 热输入功率/kW | 反应器尺寸/m |
---|---|---|---|
移动床 | 东南大学 | 20 | Dt=0.53;Ht=0.6 |
鼓泡床 | 法国石油研究院 | 10 | Dt=0.1;Ht=1.0 |
复合床 | 清华大学 | 30 | Dt=0.12, 0.06;Ht=3.32 |
复合床 | 西班牙煤炭研究所 | 50 | Dt=0.3, 0.102;Ht=4.8 |
复合床 | 华中科技大学 | 50 | Dt=0.4, 0.1;Ht=3.92 |
复合床 | 查尔姆斯科技大学 | 100 | Dt=0.4, 0.154;Ht=4.0 |
快速床 | 维也纳科技大学 | 100 | Dt=0.125;Ht=4.73 |
快速床 | 犹他州立大学 | 200 | Dt=0.26;Ht=6.1 |
快速床 | 达姆斯塔特工业大学 | 1 000 | Dt=0.59;Ht=8.66 |
快速床 | 阿尔斯通公司 | 3 000 | Ht=18.3 |
快速床 | 清华大学、东方锅炉[ | 1 500 | Ht=10.45 |
快速床 | 清华大学、东方锅炉[ | 5 000 | Ht=32 |
表2 空气反应器类型
Tab. 2 Types of air reactor
床型 | 研究机构 | 热输入功率/kW | 反应器尺寸/m |
---|---|---|---|
移动床 | 东南大学 | 20 | Dt=0.53;Ht=0.6 |
鼓泡床 | 法国石油研究院 | 10 | Dt=0.1;Ht=1.0 |
复合床 | 清华大学 | 30 | Dt=0.12, 0.06;Ht=3.32 |
复合床 | 西班牙煤炭研究所 | 50 | Dt=0.3, 0.102;Ht=4.8 |
复合床 | 华中科技大学 | 50 | Dt=0.4, 0.1;Ht=3.92 |
复合床 | 查尔姆斯科技大学 | 100 | Dt=0.4, 0.154;Ht=4.0 |
快速床 | 维也纳科技大学 | 100 | Dt=0.125;Ht=4.73 |
快速床 | 犹他州立大学 | 200 | Dt=0.26;Ht=6.1 |
快速床 | 达姆斯塔特工业大学 | 1 000 | Dt=0.59;Ht=8.66 |
快速床 | 阿尔斯通公司 | 3 000 | Ht=18.3 |
快速床 | 清华大学、东方锅炉[ | 1 500 | Ht=10.45 |
快速床 | 清华大学、东方锅炉[ | 5 000 | Ht=32 |
物料循环方式 | 研究机构 | 热输入功率/kW | 连接形式 | |
---|---|---|---|---|
AR→FR | FR→AR | |||
AR顶部返料+FR顶部返料 | 西班牙煤炭研究所 | 50 | 回料阀 | 回料阀 |
华中科技大学 | 50 | 回料阀 | 回料阀 | |
达姆斯塔特工业大学 | 1 000 | 螺旋输送 | 回料阀 | |
达姆斯塔特工业大学 | 1 000 | L阀 | 回料阀 | |
AR顶部返料+FR底部返料 | 维也纳科技大学 | 100 | 回料阀 | 回料阀 |
挪威科技大学 | 150 | 回料阀 | 提升管 | |
俄亥俄州立大学 | 25 | 立管料封 | L阀 | |
斯图加特大学 | 10 | 锥形阀 | 回料阀 | |
阿尔斯通公司 | 3 000 | J阀 | 回料阀 | |
AR顶部返料+FR溢流返料 | 查尔姆斯科技大学 | 10 | 回料阀 | 回料阀 |
东南大学 | 10 | 立管料封 | L阀 | |
查尔姆斯科技大学 | 100 | 回料阀 | 回料阀 | |
汉堡大学 | 25 | 回料阀 | 回料阀 | |
斯图加特大学 | 10 | 锥形阀 | 回料阀 | |
犹他州立大学 | 200 | 回料阀 | 回料阀 | |
清华大学 | 30 | 回料阀 | 回料阀 | |
清华大学、东方锅炉[ | 1 500 | 回料阀 | 回料阀 | |
清华大学、东方锅炉[ | 5 000 | 回料阀 | 回料阀 |
表3 化学链燃烧装置的物料循环方式汇总
Tab. 3 Summary of solid circulation modes of chemical looping combustion device
物料循环方式 | 研究机构 | 热输入功率/kW | 连接形式 | |
---|---|---|---|---|
AR→FR | FR→AR | |||
AR顶部返料+FR顶部返料 | 西班牙煤炭研究所 | 50 | 回料阀 | 回料阀 |
华中科技大学 | 50 | 回料阀 | 回料阀 | |
达姆斯塔特工业大学 | 1 000 | 螺旋输送 | 回料阀 | |
达姆斯塔特工业大学 | 1 000 | L阀 | 回料阀 | |
AR顶部返料+FR底部返料 | 维也纳科技大学 | 100 | 回料阀 | 回料阀 |
挪威科技大学 | 150 | 回料阀 | 提升管 | |
俄亥俄州立大学 | 25 | 立管料封 | L阀 | |
斯图加特大学 | 10 | 锥形阀 | 回料阀 | |
阿尔斯通公司 | 3 000 | J阀 | 回料阀 | |
AR顶部返料+FR溢流返料 | 查尔姆斯科技大学 | 10 | 回料阀 | 回料阀 |
东南大学 | 10 | 立管料封 | L阀 | |
查尔姆斯科技大学 | 100 | 回料阀 | 回料阀 | |
汉堡大学 | 25 | 回料阀 | 回料阀 | |
斯图加特大学 | 10 | 锥形阀 | 回料阀 | |
犹他州立大学 | 200 | 回料阀 | 回料阀 | |
清华大学 | 30 | 回料阀 | 回料阀 | |
清华大学、东方锅炉[ | 1 500 | 回料阀 | 回料阀 | |
清华大学、东方锅炉[ | 5 000 | 回料阀 | 回料阀 |
1 | DEMETRIOU E, HADJISTASSOU C .Can China decarbonize its electricity sector?[J].Energy Policy,2021,148:111917. doi:10.1016/j.enpol.2020.111917 |
2 | BUI M, ADJIMAN C S, BARDOW A,et al .Carbon capture and storage (CCS):the way forward[J].Energy Environment Science,2018,11(5):1062-1176. |
3 | 胥蕊娜,陈文颖,吴宗鑫 .电厂中CO2捕集技术的成本及效率[J].清华大学学报(自然科学版),2009,49(9):1542-1545. |
XU R N, CHEN WY, WU Z X .Cost and performance of power plants with CO2 capture[J].Journal of Tsinghua University (Science & Technology),2009,49(9):1542-1545. | |
4 | 刘宇,曹江,朱声宝 .挑战全球气候变化:二氧化碳捕集与封存[J].前沿科学,2010,4(1):40-51. |
LIU Y, CAO J, ZHU S B .Challenging climate change: carbon dioxide capture and storage[J].Frontier Science,2010,4(1):40-51. | |
5 | RUBIN E S, MANTRIPRAGADA H, MARKS A,et al .The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion, 2012,38(5):630-671. doi:10.1016/j.pecs.2012.03.003 |
6 | DAVISON J .Performance and costs of power plants with capture and storage of CO2 [J].Energy,2007,32(7):1163-1176. doi:10.1016/j.energy.2006.07.039 |
7 | CEBRUCEAN D, CEBRUCEAN V, IONEL I .CO2 capture and storage from fossil fuel power plants[J].Energ Procedia,2014,63:18-26. doi:10.1016/j.egypro.2014.11.003 |
8 | ABANADES J C, ARIAS B, LYNGFELT A,et al. Emerging CO 2 capture systems[J].International Journal of Greenhouse Gas Control,2015,40:126-166. |
9 | LEWIS W K, GILLILAND E R .Production of pure carbon dioxide:2665972[P].1954-01-12. doi:10.1021/ie50534a057 |
10 | RICHTER H J, KNOCHE K F .Reversibility of combustion processes[J].ACS Symposium Series,1983,235:71-85. doi:10.1021/bk-1983-0235.ch003 |
11 | ISHIDA M, ZHENG D, AKEHATA T .Evaluation of a chemical looping combustion power generation system by graphic exergy analysis[J].Energy,1987, 12(2):147-154. doi:10.1016/0360-5442(87)90119-8 |
12 | ISHIDA M, JIN H G .A new advanced power generation system using chemical looping combustion[J].Energy,1994,19(4):415-422. doi:10.1016/0360-5442(94)90120-1 |
13 | LYNFELT A, LECKNER B, MATTISSON T .A fluidized-bed combustion process with inherent CO2 separation:application of chemical-looping combustion[J].Chemical Engineering Science,2001,56(10):3101-3113. doi:10.1016/s0009-2509(01)00007-0 |
14 | LYNGFELT A, KRONBERGER B, ADANEZ J,et al .Design and operation of a 10 kW chemical-looping combustor[C]//Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies.Vancouver,Canada:Elsevier Science,2004:115-123. doi:10.1016/b978-008044704-9/50013-6 |
15 | ABAD A, PEREZ-VEGA R, DE DIEGO L F,et al .Design and operation of a 50 kWth chemical looping combustion (CLC) unit for solid fuels[J].Applied Energy,2015,157:295-303. doi:10.1016/j.apenergy.2015.03.094 |
16 | SAUCEDO M A, LIM J Y, DENNIS J S,et al .CO2-gasification of a lignite coal in the presence of an iron-based oxygen carrier for chemical-looping combustion[J].Fuel,2014,127:186-201. doi:10.1016/j.fuel.2013.07.045 |
17 | STROEHLE J, ORTH M, EPPLE B .Design and operation of a 1 MWth chemical looping plant[J].Applied Energy,2014,113:1490-1495. doi:10.1016/j.apenergy.2013.09.008 |
18 | GAUTHIER T, YAZDANPANAH M, FORRET A,et al .CLC,a promising concept with challenging development issues[J].Powder Technology,2017,316:3-17. doi:10.1016/j.powtec.2017.01.003 |
19 | BISCHI A, LANGORGEN O, SAANUM I,et al .Design study of a 150 kWth double loop circulating fluidized bed reactor system for chemical looping combustion with focus on industrial applicability and pressurization[J].International Journal of Greenhouse Gas Control,2011,5:467-474. doi:10.1016/j.ijggc.2010.09.005 |
20 | STOLLHO M, PENTHOR S, MAYER K,et al .Fluid dynamic evaluation of a 10 MW scale reactor design for chemical looping combustion of gaseous fuels[J].Chemical Engineering Science,2018, 178:48-60. doi:10.1016/j.ces.2017.12.015 |
21 | TONG A, BAYHAM S, KATHE M V,et al .Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University[J].Applied Energy,2014,113:1836-1845. doi:10.1016/j.apenergy.2013.05.024 |
22 | CLAYTON C K, WHITTY K J .Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling[J].Applied Energy,2014,116:416-423. doi:10.1016/j.apenergy.2013.10.032 |
23 | ABDULALLY I, ANDRUS H E, EDBERG C,et al .Alstom’s chemical looping combustion prototype for CO2 capture from existing pulverized coal fired power plants[R].Windsor,CT,USA:Alstom Power Inc.,2012. |
24 | ZHANG Y, WANG D, POTTIMURTHY Y,et al .Coal direct chemical looping process:250 kW pilot-scale testing for power generation and carbon capture[J].Applied Energy,2021,282:116065. doi:10.1016/j.apenergy.2020.116065 |
25 | RYU H J, JIN G T, YI C K .Demonstration of inherent CO2 separation and no NO x emission in a 50 kW chemical-looping combustor: continuous reduction and oxidation experiment[C]//7th International Conference on Greenhouse Gas Control Technologies.Vancouver,Canada:Elsevier Science,2004:1907-1910. doi:10.1016/b978-008044704-9/50238-x |
26 | LIN S, SAITO T, HASHIMOTO K .Development of the three-tower chemical looping coal combustion technology[J].Energy Procedia,2016,114:414-418. doi:10.1016/j.egypro.2017.03.1183 |
27 | CHEN H, CHENG M, LIU L,et al .Coal-fired chemical looping combustion coupled with a high-efficiency annular carbon stripper[J].International Journal of Greenhouse Gas Control,2020,93:102889. doi:10.1016/j.ijggc.2019.102889 |
28 | 陈虎,李振山,蔡宁生 .3 MWth煤化学链燃烧装置的设计计算与分析[J].石油学报(石油加工),2020,36(6):1111-1119. doi:10.1016/j.ijggc.2019.102889 |
CHEN H, LI Z S, CAI N S .Design and analysis of 3 MWth coal-fired chemical looping combustion[J].Acta Petrolei Sinica (Petroleum Processing Section),2020,36(6):1111-1119. doi:10.1016/j.ijggc.2019.102889 | |
29 | XIAO R, CHEN L, SAHA C,et al .Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit[J].International Journal of Greenhouse Gas Control,2012,10:363-373. doi:10.1016/j.ijggc.2012.07.008 |
30 | 沈天绪,吴建,闫景春,等 .双级燃料反应器的煤化学链燃烧特性[J].化工学报,2018,69(9):3965-3974. |
SHEN T X, WU J, YAN J C,et al .Chemical looping combustion of coal in a two-stage fuel reactor[J]. CIESC Journal,2018,69(9): 3965-3974. | |
31 | MA J, ZHAO H, TIAN X,et al .Chemical looping combustion of coal in a 5 kWth interconnected fluidized bed reactor using hematite as oxygen carrier[J].Applied Energy,2015,157:304-313. doi:10.1016/j.apenergy.2015.03.124 |
32 | 范峻铭,洪慧,金红光 .基于化学链燃烧生物质煤互补的天然气动力联产系统研究[J].工程热物理学报,2017,38(7):1466-1471. doi:10.1016/j.renene.2018.02.116 |
FAN J M, HONG H, JIN H G .System performance of SNG and power polygeneration system with chemical looping combustion driven by hybrid coal and biomass[J].Journal of Engineering Thermophysics,2017,38(7):1466-1471. doi:10.1016/j.renene.2018.02.116 | |
33 | 邓征兵,黄振,郑安庆,等 .铁基载氧体的污泥化学链气化过程中氮迁移热力学模拟与实验研究[J].新能源进展,2019,7(3):199-206. doi:10.3969/j.issn.2095-560X.2019.03.001 |
DENG Z B, HUANG Z, ZHENG A Q,et al .Thermodynamic analysis and experimental study of nitrongen migration during the sludge chemical looping gasification usingiron-based oxygen carriers[J].Advanced in New and Renewable Energy,2019,7(3):199-206. doi:10.3969/j.issn.2095-560X.2019.03.001 | |
34 | KRONBERGER B, JOHANSSON E, LOFFLER G,et al .A two-compartment fluidized bed reactor for CO2 capture by chemical-looping combustion[J].Chemical Engineering Technology,2004,27(12):1318-1326. doi:10.1002/ceat.200402137 |
35 | THOMAS D C, BENSON S M .Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project[M].Amsterdam:Elsevier Science,2005:625-645. |
36 | ADANEZ J, GAYAN P, CELAYA J,et al .Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: Effect of operating conditions on methane combustion[J].Industrial Engineering & Chemistry Research,2006,45(17):6075-6080. doi:10.1021/ie060364l |
37 | BOLHAR-NORDENKAMPF J, PROELL T, KOLBITSCH P,et al .Performance of a NiO-based oxygen carrier for chemical looping combustion and reforming in a 120 kW unit[J].Energy Procedia,2009,1:19-25. doi:10.1016/j.egypro.2009.01.005 |
38 | LEION H, LYNGFELT A, JOHANSSON M,et al .The use of ilmenite as an oxygen carrier in chemical-looping combustion[J].Chemical Engineering Research and Design,2008,86:1017-1026. doi:10.1016/j.cherd.2008.03.019 |
39 | ADANEZ J, ABAD A, PEREZ-VEGA R,et al .Design and operation of a coal-fired 50 kWth chemical looping combustor[J].Energy Procedia,2014,63:63-72. doi:10.1016/j.egypro.2014.11.007 |
40 | MAYER F, BIDWE A R, SCHOPF A,et al .Comparison of a new micaceous iron oxide and ilmenite with respect to syngas conversion in a BFB reactor and adaptation of a 10 kWth DFB system for CLC to solid fuels[C]//2nd International Conference on Chemical Looping.Darmstadt,Germany:Elsevier Science,2012:1863-1868. |
41 | THON A, KRAMP M, HARTGE E,et al .Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier[J].Applied Energy,2014,118:309-317. doi:10.1016/j.apenergy.2013.11.023 |
42 | LIHTY J, WHITTY K, SMITH P,et al .Chemical looping with oxygen uncoupling with coal[C]//NETL CO2 Capture Technology Meeting.Pittsburgh,USA:NETL,2012. |
43 | KIM H R, WANG D, ZENG L,et al .Coal direct chemical looping combustion process:design and operation of a 25 kWth sub-pilot unit[J].Fuel,2013,108:370-384. doi:10.1016/j.fuel.2012.12.038 |
44 | SHEN L, WU J, GAO Z,et al .Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor[J].Combustion and Flame,2009,156(7):1377-1385. doi:10.1016/j.combustflame.2009.02.005 |
45 | MA J, TIAN X, WANG C,et al .Performance of a 50 kWth coal-fuelled chemical looping combustor[J].International Journal of Greenhouse Gas Control,2018,75:98-106. doi:10.1016/j.ijggc.2018.05.002 |
46 | ZHAO H, TIAN X, MA J,et al .Chemical looping combustion of coal in China:comprehensive progress,remaining challenges,and potential opportunities[J].Energy & Fuels,2020,34(6):6696-6734. doi:10.1021/acs.energyfuels.0c00989 |
47 | XIANG W, WANG S, DI T .Investigation of gasification chemical looping combustion combined cycle performance[J].Energy & Fuels,2008,22(2):961-966. doi:10.1021/ef7007002 |
48 | ZHU L, CHEN H, FAN J,et al .Thermo-economic investigation:an insight tool to analyze NGCC with calcium-looping process and with chemical-looping combustion for CO2 capture[J].International Journal of Energy Research,2016,40(14):1908-1924. doi:10.1002/er.3556 |
49 | FAN J, ZHU L, HONG H,et al .A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal driven power technologies for CO2 capture[J]. Energy,2017,119:1171-1180. doi:10.1016/j.energy.2016.11.072 |
50 | ADANEZ J, ABAD A, MENDIARA T,et al .Chemical looping combustion of solid fuels[J].Progress in Energy and Combustion,2018,65:6-66. doi:10.1016/j.pecs.2017.07.005 |
51 | BROWN T A, DENNIS J S, SCOTT S A,et al .Gasification and chemical-looping combustion of a lignite char in a fluidized bed of iron oxide[J].Energy & Fuels,2010,24(5):3034-3048. doi:10.1021/ef100068m |
52 | MATTISSON T, LYNGFELT A, LEION H .Chemical-looping with oxygen uncoupling for combustion of solid fuels[J].International Journal of Greenhouse Gas Control,2009,3(1):11-19. doi:10.1016/j.ijggc.2008.06.002 |
53 | RYDEN M, LYNGFELT A, MATTISSON T .CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU):experiments in a continuously operating fluidized-bed reactor system[J].International Journal of Greenhouse Gas Control,2011,5(2):356-366. doi:10.1016/j.ijggc.2010.08.004 |
54 | ADANEZ J, ABAD A, GARCIA-LABIANO F,et al .Progress in chemical-looping combustion and reforming technologies[J].Progress in Energy and Combustion,2012,38(2):215-282. doi:10.1016/j.pecs.2011.09.001 |
55 | ROUX S, BENSAKHRIA A, ANTONINI G .Study and improvement of the regeneration of metallic oxides used as oxygen carriers for a new combustion process[J]. International Journal of Chemical Reactor Engineering,2006,4:A38. doi:10.2202/1542-6580.1300 |
56 | LINDERHOLM C, SCHMITZ M, KNUTSSON P,et al .Use of low-volatile solid fuels in a 100 kW chemical-looping combustor[J].Energy & Fuels,2014,28(9):5942-5952. doi:10.1021/ef501067b |
57 | SUNDQVIST S, ARJMAND M, MATTISSON T,et al .Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU)[J].International Journal of Greenhouse Gas Control,2015,43:179-188. doi:10.1016/j.ijggc.2015.10.027 |
58 | BAO J, LI Z, CAI N .Promoting the reduction reactivity of ilmenite by introducing foreign ions in chemical looping combustion[J].Industrial Engineering & Chemistry Research,2013,52(18):6119-6128. doi:10.1021/ie400237p |
59 | LINDERNOLM C, SCHMITZ M, BIERMANN M,et al .Chemical-looping combustion of solid fuel in a 100 kW unit using sintered manganese ore as oxygen carrier[J].International Journal of Greenhouse Gas Control,2017,65:170-181. doi:10.1016/j.ijggc.2017.07.017 |
60 | LIU L, LI Z, LI Z,et al .Heterogeneous reaction kinetics of a perovskite oxygen carrier for chemical looping combustion coupled with oxygen uncoupling[J].Chemical Engineering Journal,2021,417:128054. doi:10.1016/j.cej.2020.128054 |
61 | LIU L, LI Z, WANG Y,et al .Industry-scale production of a perovskite oxide as oxygen carrier material in chemical looping[J].Chemical Engineering Journal,2022,431:134006. doi:10.1016/j.cej.2021.134006 |
62 | PETRESCU L, CORMOS C .Environmental assessment of IGCC power plants with pre-combustion CO2 capture by chemical & calcium looping methods[J].Journal of Cleaner Production,2017,158:233-244. doi:10.1016/j.jclepro.2017.05.011 |
63 | OHLEMUELLER P, BUSCH J, REITZ M,et al .Chemical-looping combustion of hard coal:autothermal operation of a 1 MWth pilot plant[J]. Journal of Energy Resources Technology,2016,138:50-56. doi:10.1115/1.4032357 |
64 | WANG X, JIN B, ZHU X,et al .Experimental evaluation of a novel 20 kWth in situ gasification chemical looping combustion unit with an iron ore as the oxygen carrier[J]. Industrial Engineering & Chemistry Research,2016,55(45):11775-11784. doi:10.1021/acs.iecr.6b03028 |
65 | LYNFELT A, BRINK A, LANGORGEN O,et al .11 000 h of chemical-looping combustion operation:where are we and where do we want to go?[J].International Journal of Greenhouse Gas Control,2019,88:38-56. doi:10.1016/j.ijggc.2019.05.023 |
66 | BERGUERAND N, LYNFELT A .Chemical-looping combustion of petroleum coke using ilmenite in a 10 kWth unit-high-temperature operation[J].Energy & Fuels,2009,23(10):5257-5268. doi:10.1021/ef900464j |
67 | SOZINHO T, PELLETANT W, YAZDANPANAH M,et al .Petcoke chemical looping combustion in a continuous 10 kWth pilot plant[J].Abstracts of Papers of the American Chemical Society,2013,245:355. |
68 | SCHMID J C, FUCHS J, BENEDIKT F,et al .Sorption enhanced reforming with the novel dual fluidized bed test plant at TU Wien[C]//25th European Biomass International Conference.Stockholm,Sweden:EUBCE,2017:1-31. |
69 | CHEN H, LI Z, LIU X,et al .Solid circulation study in a 1.5 MWth cold flow model of chemical looping combustion[J].Industrial & Engineering Chemistry Research,2021,60(5):2265-2277. doi:10.1021/acs.iecr.0c04611 |
70 | CHENG M, SUN H, LI Z,et al .Annular carbon stripper for chemical-looping combustion of coal[J].Industrial & Engineering Chemistry Research,2017,56(6):1580-1593. doi:10.1021/acs.iecr.6b03168 |
71 | STROEHLE J, ORTH M, EPPLE B .Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier[J].Applied Energy,2015,157:288-294. doi:10.1016/j.apenergy.2015.06.035 |
72 | BISCHI A, LANGORGEN O, MORIN J,et al .Hydrodynamic viability of chemical looping processes by means of cold flow model investigation[J]. Applied Energy,2012,97:201-216. doi:10.1016/j.apenergy.2011.12.051 |
73 | OHLEMUELLER P, STROEHLE J, EPPLE B .Chemical looping combustion of hard coal and torrefied biomass in a 1 MWth pilot plant[J].International Journal of Greenhouse Gas Control,2017,65:149-159. |
74 | LYNFELT A, LECKNER B .A 1000 MWth boiler for chemical-looping combustion of solid fuels:discussion of design and costs[J].Applied Energy,2015,157:475-487. doi:10.1016/j.apenergy.2015.04.057 |
75 | PEREZ-VEGA R, ABAD A, GARCIA-LABIANO F,et al .Coal combustion in a 50 kWth chemical looping combustion unit:seeking operating conditions to maximize CO2 capture and combustion efficiency[J].International Journal of Greenhouse Gas Control,2016,50:80-92. doi:10.1016/j.ijggc.2016.04.006 |
76 | LINDERHOLM C, SCHMITZ M, KNUTSSON P,et al .Chemical-looping combustion in a 100 kW unit using a mixture of ilmenite and manganese ore as oxygen carrier[J].Fuel,2016,166:533-542. doi:10.1016/j.fuel.2015.11.015 |
77 | MARKSTROM P, LINDERHOLM C, LYNGFELT A .Operation of a 100 kW chemical-looping combustor with Mexican petroleum coke and Cerrejon coal[J].Applied Energy,2014,113:1830-1835. doi:10.1016/j.apenergy.2013.04.066 |
78 | DUBEY A K, SAMANTA A, SARKAR P,et al .Hydrodynamic characteristics in a pilot-scale cold flow model for chemical looping combustion[J].Advanced Powder Technology,2018,29(6):1499-1506. doi:10.1016/j.apt.2018.03.017 |
79 | YANG X, MA Z, LIANG Z,et al .Hydrodynamic characteristics in a cold model of the dual fluidized bed with mixed particles[J].Powder Technology,2019,351:291-304. doi:10.1016/j.powtec.2019.04.015 |
80 | LI Y, LI Z, LIU L,et al .Measuring the fast oxidation kinetics of a manganese oxygen carrier using microfluidized bed thermogravimetric analysis[J].Chemical Engineering Journal,2020,385:123970. doi:10.1016/j.cej.2019.123970 |
81 | ABAD A, ADANEZ J, GAYAN P,et al .Conceptual design of a 100 MWth CLC unit for solid fuel combustion[J].Applied Energy,2015,157:462-474. doi:10.1016/j.apenergy.2015.04.043 |
82 | YUE G, LU J, ZHANG H,et al .Design theory of circulating fluidized bed boilers[C]//Proceedings of the 18th International Conference on Fluidized Bed Combustion.New York:ASME Digital Collection,2005:135-146. doi:10.1115/fbc2005-78134 |
83 | 李振山,成茂,陈虎,等 .3 MWth化学链燃烧装置设计方法[J].新能源进展,2018,6(3):169-174. |
LI Z S, CHENG M, CHEN H,et al .Design method of 3 MWth chemical looping combustion system[J]. Advanced in New and Renewable Energy,2018,6(3):169-174. | |
84 | 马建东,宋涛 .10 MWth串行流化床煤化学链燃烧系统反应器设计[J].石油学报(石油加工),2020,36(6):1331-1337. |
MA J D, SONG T .Reactor design of a 10 MWth chemical looping combustion system based on interconnected fluidized beds[J].Acta Petrolei Sinica (Petroleum Processing Section),2020,36(6):1331-1337. | |
85 | 陈虎 .化学链燃烧双流化床流态化特性试验与模型研究[D].北京:清华大学,2021. |
CHEN H .Experimental and modeling study on fluidization characteristics of dual fluidized bed for chemical looping combustion[D].Beijing:Tsinghua University,2021. |
[1] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
[2] | 孙宇航, 李超, 王争荣, 孙路长, 王凯亮, 胡昔鸣, 方梦祥, 张锋. 甲基二乙醇胺-二元胺混合体系烟气CO2吸收再生性能研究[J]. 发电技术, 2024, 45(3): 468-477. |
[3] | 高忠明, 朱德敖, 陈雨佳, 刘三举, 王勤辉. 农林废弃物循环流化床空气气化特性实验研究[J]. 发电技术, 2024, 45(3): 535-544. |
[4] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[5] | 邓启刚, 吕卓, 石友, 鲁佳易, 周旭, 王奥宇, 杨冬. 不带外置床的700 MW超超临界循环流化床锅炉失电后水冷壁安全计算分析[J]. 发电技术, 2024, 45(2): 240-249. |
[6] | 董中豪, 卢啸风, 史丽超, 杨增增, 孔繁盛, 王鹏, 林国强, 赵鹏. 炉膛耐火材料热惯性对循环流化床锅炉调峰速率的影响[J]. 发电技术, 2023, 44(4): 514-524. |
[7] | 王洪健, 王海洋, 孔皓, 周托, 张缦, 杨海瑞. 135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J]. 发电技术, 2022, 43(6): 918-926. |
[8] | 苗桢武, 沈来宏, 赵海波. 复合赤铁矿和铜矿石载氧体在化学链燃烧中的循环反应性能研究[J]. 发电技术, 2022, 43(4): 574-583. |
[9] | 叶航, 郝宁, 刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术, 2022, 43(4): 562-573. |
[10] | 董瑞, 高林, 何松, 杨东泰. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4): 523-532. |
[11] | 李林, 刘彤宇, 李爽, 史翊翔, 蔡宁生. 甲醇重整制氢燃料电池发电研究进展[J]. 发电技术, 2022, 43(1): 44-53. |
[12] | 韩峰, 丛堃林, 向杰, 李清海, 张衍国, 马静. 基于Kolmogorov熵的气固鼓泡流化床中空隙率波动信号分析[J]. 发电技术, 2021, 42(3): 322-328. |
[13] | 牛斌, 李丽锋, 孙倩, 张培华. 超临界循环流化床机组全负荷段深度调峰方法研究[J]. 发电技术, 2021, 42(2): 273-279. |
[14] | 王泽众, 黄平瑞, 魏高升, 崔柳, 徐超, 杜小泽. 太阳能热发电固–气两相化学储热技术研究进展[J]. 发电技术, 2021, 42(2): 238-246. |
[15] | 邱国华, 徐鹏志. 掺烧固废燃料的循环流化床锅炉引风机叶片腐蚀原因分析[J]. 发电技术, 2020, 41(6): 681-688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||