发电技术 ›› 2021, Vol. 42 ›› Issue (2): 238-246.DOI: 10.12096/j.2096-4528.pgt.21014
王泽众(), 黄平瑞(
), 魏高升(
), 崔柳, 徐超, 杜小泽
收稿日期:
2021-03-04
出版日期:
2021-04-30
发布日期:
2021-04-29
作者简介:
王泽众(1998), 男, 硕士研究生, 主要从事光热发电及化学储热方面的研究工作, sanxia51@163.com基金资助:
Zezhong WANG(), Pingrui HUANG(
), Gaosheng WEI(
), Liu CUI, Chao XU, Xiaoze DU
Received:
2021-03-04
Published:
2021-04-30
Online:
2021-04-29
Supported by:
摘要:
化学储热作为一种储热密度高、存储时间长、运输距离远的储热方式,近些年来得到广泛研究。首先针对现存的几类固–气两相化学储热反应体系的基本原理和研究进展进行了综述,主要涉及金属氢氧化物反应体系、金属氧化物反应体系、碳酸盐反应体系以及水合盐反应体系。然后依据固相反应物在反应器内的运动状态,将反应器分为固定床反应器、流化床反应器和移动床反应器3类,并分别对其研究进展进行了总结。最后基于目前在化学储热研究中存在的一些不足,分析了化学储热未来的发展趋势。目前,化学储热充/放热过程的有效控制仍需进一步研究,化学反应速率与传热的强化与匹配也还存在技术困难。长期运行状况下,化学储热的循环稳定性仍有待进一步探究。
中图分类号:
王泽众, 黄平瑞, 魏高升, 崔柳, 徐超, 杜小泽. 太阳能热发电固–气两相化学储热技术研究进展[J]. 发电技术, 2021, 42(2): 238-246.
Zezhong WANG, Pingrui HUANG, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Research Progress of Solid-Gas Two-Phase Chemical Heat Storage Technology for Solar Thermal Power Generation[J]. Power Generation Technology, 2021, 42(2): 238-246.
1 | 国家统计局能源统计司. 中国能源统计年鉴2019[M]. 北京: 中国统计出版社, 2020: 34- 57. |
Department of Energy Statistics, National Bureau of Statistics . China energy statistical yearbook 2019[M]. Beijing: China Statistics Press, 2020: 34- 57. | |
2 | 李立新, 周宇昊, 郑文广. 能源转型背景下分布式能源技术发展前景[J]. 发电技术, 2020, 41 (6): 571- 577. |
LI L X , ZHOU Y H , ZHENG W G . Development prospect of distributed energy technology under the background of energy transformation[J]. Power Generation Technology, 2020, 41 (6): 571- 577. | |
3 | 谭鑫, 徐秋磊, 王洁雨, 等. 基于改进共原点灰色聚类的清洁能源消纳综合效益评估[J]. 广东电力, 2021, 34 (2): 28- 35. |
TAN X , XU Q L , WANG J Y , et al. Comprehensive benefit evaluation of clean energy consumption based on improved common origin gray clustering evaluation method[J]. Guangdong Electric Power, 2021, 34 (2): 28- 35. | |
4 | 黄鹤, 秦岭, 喻洋洋, 等. 水光多能互补清洁能源智能发电技术[J]. 分布式能源, 2020, 5 (2): 21- 26. |
HUANG H , QIN L , YU Y Y , et al. Smart-power generation technology of clean energy with water-light multi-energy complementary[J]. Distributed Energy, 2020, 5 (2): 21- 26. | |
5 |
张争, 夏勇. 太阳能光热发电的发展现状及前景分析[J]. 长江工程职业技术学院学报, 2013, 30 (1): 24- 26.
DOI |
ZHANG Z , XIA Y . Development status quo and prospect analysis of solar thermal power[J]. Journal of Changjiang Institute of Technology, 2013, 30 (1): 24- 26.
DOI |
|
6 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 230. |
ZHANG Z Y , JU X , PAN X Y , et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41 (3): 220- 230. | |
7 |
XU J , WANG R Z , LI Y . A review of available technologies for seasonal thermal energy storage[J]. Solar Energy, 2014, 103, 610- 638.
DOI |
8 |
徐其利, 孙杰. 用于太阳能光热发电系统的CaO/Ca(OH)2化学储热技术综述[J]. 华电技术, 2020, 42 (4): 1- 11.
DOI |
XU Q L , SUN J . Review of CaO/Ca(OH)2 chemical heat storage technology for CSP[J]. Huadian Technology, 2020, 42 (4): 1- 11.
DOI |
|
9 |
WENTWORTH W E , CHEN E . Simple thermal decomposition reactions for storage of solar thermal energy[J]. Solar Energy, 1976, 18, 205- 214.
DOI |
10 |
ANDRÉ L , ABANADES S , FLAMANT G . Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2016, 64, 703- 715.
DOI |
11 | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33 (12): 3238- 3245. |
WU J , LONG X F . Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33 (12): 3238- 3245. | |
12 | 马小琨, 徐超, 于子博, 等. 基于水合盐热化学吸附的储热技术[J]. 科学通报, 2015, 60 (36): 3569- 3579. |
MA X K , XU C , YU Z B , et al. A review of salt hydrate-based sorption technologies for long-term thermal energy storage[J]. Chinese Science Bulletin, 2015, 60 (36): 3569- 3579. | |
13 |
PARDO P , DEYDIERA A , ANXIONNAZ-MINVIELLE Z , et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32, 591- 610.
DOI URL |
14 |
Sakellariou K G , Karagiannakis G , Criado Y A , et al. Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J]. Solar Energy, 2015, 122, 215- 230.
DOI |
15 |
SAKELLARIOU K G , CRIADO Y A , TSONGIDIS N I , et al. Multi-cyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme[J]. Solar Energy, 2017, 146, 65- 78.
DOI |
16 |
YAN J , ZHAO C Y . First-principle study of CaO/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping[J]. Chemical Engineering Science, 2014, 117, 293- 300.
DOI URL |
17 |
YAN J , ZHAO C Y . Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping[J]. Chemical Engineering Science, 2015, 138, 86- 92.
DOI |
18 |
YAN J , ZHAO C Y . Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175, 277- 284.
DOI |
19 |
ROßKOPF C , AFFLERBACH S , SCHMIDT M , et al. Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage[J]. Energy Conversion and Management, 2015, 97, 94- 102.
DOI |
20 |
AFFLERBACH S , KAPPES M , GIPPERICH A , et al. Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions[J]. Solar Energy, 2017, 148, 1- 11.
DOI |
21 |
AFFLERBACH S , AFFLERBACH K , TRETTIN R , et al. Improvement of a semipermeable shell for encapsulation of calcium hydroxide for thermochemical heat storage solutions material design and evaluation in laboratory and reactor scale[J]. Solar Energy, 2021, 217, 208- 222.
DOI |
22 |
MASTRONARDO E , BONACCORSI L , KATO Y , et al. Strategies for the enhancement of heat storage materials performances for MgO/H2O/Mg(OH)2 thermochemical storage system[J]. Applied Thermal Engineering, 2017, 120, 626- 634.
DOI |
23 |
BOWREY R G , JUTSEN J . Energy storage using the reversible oxidation of barium oxide[J]. Solar Energy, 1978, 21, 523- 525.
DOI |
24 | KARAGIANNAKIS G , PAGKOURA C , ZYGOGIANNI A , et al. Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants[J]. Energy Procedia, 2014, 149, 820- 829. |
25 |
AGRAFIOTIS C , ROEB M , SCHMUCKER M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 1:testing of cobalt oxide-based powders[J]. Solar Energy, 2014, 102, 189- 211.
DOI |
26 |
KARAGIANNAKIS G , PAGKOURA C , HALEVAS E , et al. Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: multi-cyclic assessment and semi-quantitative heat effects estimations[J]. Solar Energy, 2016, 133, 394- 407.
DOI |
27 |
AGRAFIOTIS C , ROEB M , SCHMUCKER M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 2:redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers[J]. Solar Energy, 2015, 114, 440- 458.
DOI |
28 |
AGRAFIOTIS C , TESCARI S , ROEB M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 3:cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers[J]. Solar Energy, 2015, 114, 459- 475.
DOI |
29 |
AGRAFIOTIS C , BECKER A , ROEB M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 5:testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage[J]. Solar Energy, 2016, 139, 676- 694.
DOI |
30 |
AGRAFIOTIS C , BLOCK T , SENHOLDT M , et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat.Part 6:testing of Mn-based combined oxides and porous structures[J]. Solar Energy, 2017, 149, 227- 244.
DOI |
31 |
BENITEZ-GUERRERO M , VALVERDE J M , SANCHEZ-JIMENEZ P E , et al. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in concentrated solar power plants[J]. Solar Energy, 2017, 153, 188- 199.
DOI |
32 |
GHORBAEI S Z , EBRAHIM H A . Carbonation reaction of strontium oxide for thermochemical energy storage and CO2 removal applications: kinetic study and reactor performance prediction[J]. Applied Energy, 2020, 277, 115604.
DOI |
33 |
BENITEZ-GUERRERO M , VALVERDE J M , PEREJON A , et al. Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power[J]. Applied Energy, 2018, 210, 108- 116.
DOI |
34 |
ANDRÉ L , ABANADES S . Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J]. Journal of Energy Storage, 2017, 13, 193- 205.
DOI |
35 |
BAGHERISERESHKI E , TRAN J , LEI F , et al. Investigation into SrO/SrCO3 for high temperature thermochemical energy storage[J]. Solar Energy, 2018, 160, 85- 93.
DOI |
36 |
DONKERS P A J , PEL L , ADAN O C G . Experimental studies for the cyclability of salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2016, 5, 25- 32.
DOI |
37 |
SUTTON R J , JEWELL E , ELVINS J , et al. Characterising the discharge cycle of CaCl2 and LiNO3 hydrated salts within a vermiculite composite scaffold for thermochemical storage[J]. Energy and Buildings, 2018, 162, 109- 120.
DOI |
38 |
MAMANI V , GUTIÉRREZ A , USHAK S . Development of low-cost inorganic salt hydrate as a thermochemical energy storage material[J]. Solar Energy Materials and Solar Cells, 2018, 176, 346- 356.
DOI |
39 |
CLARK R J , FARID M . Experimental investigation into the performance of novel SrCl2-based composite material for thermochemical energy storage[J]. Journal of Energy Storage, 2021, 36, 102390.
DOI |
40 |
Rammelberg H U , Osterland T , Priehs B , et al. Thermochemical heat storage materials: performance of mixed salt hydrates[J]. Solar Energy, 2016, 136, 571- 589.
DOI |
41 |
LI W , ZENG M , WANG Q . Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2020, 210, 110509.
DOI |
42 |
LI W , KLEMES J J , WANG Q , et al. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage[J]. Renewable Energy, 2020, 157, 920- 940.
DOI |
43 |
SCHMIDT M , GUTIERREZ A , LINDER M . Thermochemical energy storage with CaO/Ca(OH)2: experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor[J]. Applied Energy, 2017, 188, 672- 681.
DOI |
44 |
SCHMIDT M , LINDER M . Power generation based on the Ca(OH)2/CaO thermochemical storage system: experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design[J]. Applied Energy, 2017, 203, 594- 607.
DOI |
45 |
PAN Z H , ZHAO C Y . Prediction of the effective thermal conductivity of packed bed with micro-particles for thermochemical heat storage[J]. Science Bulletin, 2017, 62, 256- 265.
DOI |
46 |
PAN Z H , YAN J , ZHAO C Y . Numerical analyses and optimization of tubular thermochemical heat storage reactors using axisymmetric thermal lattice Boltzmann model[J]. Chemical Engineering Science, 2019, 195, 737- 747.
DOI |
47 |
ZENG C , LIU S , YANG L , et al. Investigation of a three-phase thermochemical reactor through an experimentally validated numerical modelling[J]. Applied Thermal Engineering, 2019, 162, 114223.
DOI |
48 | ZENG C , LIU S , SHUKLA A , et al. Numerical modelling of the operational effects on the thermochemical reactor performance[J]. Energy & Buildings, 2021, 230, 110535. |
49 |
MICHEL B , MAZET N , NEVEU P . Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance[J]. Applied Energy, 2014, 129, 177- 186.
DOI URL |
50 |
WANG B , LI L , SCHAFER F , et al. Thermal reduction of iron-manganese oxide particles in a high-temperature packed-bed solar thermochemical reactor[J]. Chemical Engineering Journal, 2021, 412, 128255.
DOI |
51 |
SCHRADER A J , DOMINICIS G , SCHIEBER G L , et al. Solar electricity via an air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions Ⅲ: solar thermochemical reactor design and modeling[J]. Solar Energy, 2017, 150, 584- 595.
DOI |
52 |
FARCOT L , PIERRÈS N , MICHEL B , et al. Numerical investigations of a continuous thermochemical heat storage reactor[J]. Journal of Energy Storage, 2018, 20, 109- 119.
DOI |
53 |
NEISES M , TESCARI S , OLIVEIRA L , et al. Solar-heated rotary kiln for thermochemical energy storage[J]. Solar Energy, 2012, 86, 3040- 3048.
DOI |
54 | ZONDAG H, KALBASENKA A, ESSEN M, et al. First studies in reactor concepts for thermochemical storage[C/OL]. Petten: ECN, 2009[2021-01-01]. http://resolver.tudelft.nl/uuid:19a8a993-7932-4519-8741-1500246c65ff. |
55 |
PARDO P , ANXIONNAZ-MINVIELLE Z , ROUGE S , et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107, 605- 616.
DOI |
56 |
FLEGKAS S , BIRKELBACH F , WINTER F , et al. Fluidized bed reactors for solid-gas thermochemical energy storage concepts: modelling and process limitations[J]. Energy, 2018, 143, 615- 623.
DOI |
57 |
CRIADO Y A , ALONSO M , ABANADES J C , et al. Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors[J]. Applied Thermal Engineering, 2014, 73, 1087- 1094.
DOI URL |
[1] | 董军, 汤建方, 臧春城, 徐立, 王志峰. 抛物面槽式太阳能集热器球形接头测试系统的研制与应用[J]. 发电技术, 2024, 45(2): 291-298. |
[2] | 徐立, 孙飞虎, 李钧, 张强强. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术, 2023, 44(2): 229-234. |
[3] | 徐运飞, 吴水木, 李英杰. 面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J]. 发电技术, 2022, 43(5): 740-747. |
[4] | 李振山, 陈虎, 李维成, 刘磊, 蔡宁生. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561. |
[5] | 徐立, 孙飞虎, 李志, 张强强. 一种太阳能集热器流体平均温度计算方法[J]. 发电技术, 2022, 43(3): 405-412. |
[6] | 廖志荣, 李朋达, 田紫芊, 徐超, 魏高升. 非均匀翅片对级联相变储热系统热性能强化的研究[J]. 发电技术, 2022, 43(1): 83-91. |
[7] | 李林, 刘彤宇, 李爽, 史翊翔, 蔡宁生. 甲醇重整制氢燃料电池发电研究进展[J]. 发电技术, 2022, 43(1): 44-53. |
[8] | 丁路, 肖欣悦, 奚正稳, 华文瀚. 塔式太阳能吸热器不同方位高空风速模拟计算及影响分析[J]. 发电技术, 2021, 42(6): 707-714. |
[9] | 孙浩, 高博, 刘建兴. 塔式太阳能电站定日镜场布局研究[J]. 发电技术, 2021, 42(6): 690-698. |
[10] | 刘兰华, 狄林文, 董兴万, 王瑞林. 抛物槽式聚光太阳能集热回路动态特性研究[J]. 发电技术, 2021, 42(6): 673-681. |
[11] | 徐立, 孙飞虎, 李钧, 张强强. 流量对抛物面槽式太阳能集热器传热特性影响的实验分析[J]. 发电技术, 2021, 42(6): 665-672. |
[12] | 刘兰华, 王瑞林, 洪慧. 塔式太阳能辅助燃气蒸汽联合循环钙基碳捕集系统设计[J]. 发电技术, 2021, 42(4): 517-524. |
[13] | 刘尧东, 张燕平, 万亮, 高伟. 基于Al2O3纳米流体的槽式太阳能热发电集热器传热建模及性能分析[J]. 发电技术, 2021, 42(2): 230-237. |
[14] | 李鹏蕾,陈林根,夏少军,张磊,王超,冯辉君. 基于熔融盐加热的甲烷蒸汽重整制氢反应器的熵产生率和氢气产率分析[J]. 发电技术, 2020, 41(4): 415-428. |
[15] | 郑开云. 超临界二氧化碳循环发电技术应用[J]. 发电技术, 2020, 41(4): 399-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||