发电技术 ›› 2024, Vol. 45 ›› Issue (3): 535-544.DOI: 10.12096/j.2096-4528.pgt.23031
高忠明1, 朱德敖2, 陈雨佳2, 刘三举1, 王勤辉2
收稿日期:
2023-03-09
修回日期:
2023-07-03
出版日期:
2024-06-30
发布日期:
2024-07-01
作者简介:
基金资助:
Zhongming GAO1, Deao ZHU2, Yujia CHEN2, Sanju LIU1, Qinhui WANG2
Received:
2023-03-09
Revised:
2023-07-03
Published:
2024-06-30
Online:
2024-07-01
Supported by:
摘要:
目的 考察生物质种类在不同参数下对循环流化床空气气化特性的影响,为宽燃料适应性的生物质循环流化床气化技术和生物质气化耦合燃煤发电技术提供相关数据参考。 方法 在自行搭建的小型常压循环流化床气化实验装置上,开展了以空气当量比(equivalent ratio,ER)、气化温度为参数,农林废弃物(稻壳、木屑、玉米秸秆和稻草)为原料的空气气化实验研究。 结果 稻壳、木屑、玉米秸秆和稻草气化气组分在不同空气当量比下的变化规律基本一致,随着空气当量比不断增加,稻壳、木屑、玉米秸秆和稻草的气化燃气低位热值和冷煤气效率均呈现先增后减的变化趋势,对于稻壳、木屑和玉米秸秆,ER为0.20时均为最优工况,最高冷煤气效率分别为46.19%、38.07%和37.71%;而对于稻草,ER为0.25时为最优工况,最高冷煤气效率可达39.55%;稻壳、木屑、玉米秸秆和稻草气化气组分中的三大可燃气体(CH4、CO、H2)在不同气化温度下的变化规律也一致,随着气化温度不断升高,稻壳、木屑、玉米秸秆和稻草的气化燃气低位热值和冷煤气效率也均呈现先增后减的变化趋势,其中稻壳和玉米秸秆冷煤气效率在气化温度为750 ℃时达到峰值,分别为46.19%和37.71%,而木屑和稻草在气化温度为760 ℃时达到峰值,分别为38.07%和37.56%。 结论 研究结果可为宽燃料适应性的生物质循环流化床气化技术和生物质气化耦合燃煤发电技术提供相关数据参考。
中图分类号:
高忠明, 朱德敖, 陈雨佳, 刘三举, 王勤辉. 农林废弃物循环流化床空气气化特性实验研究[J]. 发电技术, 2024, 45(3): 535-544.
Zhongming GAO, Deao ZHU, Yujia CHEN, Sanju LIU, Qinhui WANG. Experimental Study on the Air Gasification Characteristics of Agricultural and Forestry Waste in a Circulating Fluidized Bed[J]. Power Generation Technology, 2024, 45(3): 535-544.
项目 | 稻壳 | 木屑 | 玉米秸秆 | 稻草 | |
---|---|---|---|---|---|
工业 分析 | wad(M)/% | 5.85 | 11.66 | 10.30 | 2.24 |
wad(A)/% | 11.79 | 0.82 | 8.39 | 18.84 | |
wad(V)/% | 65.13 | 72.01 | 64.02 | 62.40 | |
wad(FC)/% | 17.23 | 15.51 | 17.29 | 16.52 | |
热值 | Qnet,ad/(J·g-1) | 15 158 | 16 472 | 14 350 | 14 133 |
元素 分析 | wad(C)/% | 41.71 | 45.13 | 40.62 | 38.05 |
wad(H)/% | 4.76 | 4.54 | 4.22 | 4.64 | |
wad(N)/% | 0.47 | 0.08 | 0.95 | 1.01 | |
wad(S)/% | 0.16 | 0.18 | 0.30 | 0.24 | |
wad(O)/% | 35.26 | 37.59 | 35.22 | 34.98 | |
wad(K)/% | 0.767 | 0.068 | 2.731 | 2.336 | |
wad(Na)/% | 0.006 | 0.007 | 0.083 | 0.104 |
表1 农林废弃物原料成分分析
Tab. 1 Component analysis of agricultural and forestry waste
项目 | 稻壳 | 木屑 | 玉米秸秆 | 稻草 | |
---|---|---|---|---|---|
工业 分析 | wad(M)/% | 5.85 | 11.66 | 10.30 | 2.24 |
wad(A)/% | 11.79 | 0.82 | 8.39 | 18.84 | |
wad(V)/% | 65.13 | 72.01 | 64.02 | 62.40 | |
wad(FC)/% | 17.23 | 15.51 | 17.29 | 16.52 | |
热值 | Qnet,ad/(J·g-1) | 15 158 | 16 472 | 14 350 | 14 133 |
元素 分析 | wad(C)/% | 41.71 | 45.13 | 40.62 | 38.05 |
wad(H)/% | 4.76 | 4.54 | 4.22 | 4.64 | |
wad(N)/% | 0.47 | 0.08 | 0.95 | 1.01 | |
wad(S)/% | 0.16 | 0.18 | 0.30 | 0.24 | |
wad(O)/% | 35.26 | 37.59 | 35.22 | 34.98 | |
wad(K)/% | 0.767 | 0.068 | 2.731 | 2.336 | |
wad(Na)/% | 0.006 | 0.007 | 0.083 | 0.104 |
参数 | 稻壳 | 木屑 | 玉米秸秆 | 稻草 |
---|---|---|---|---|
ER | 0.15 | 0.16 | 0.15 | 0.18 |
0.20 | 0.20 | 0.20 | 0.20 | |
0.25 | 0.25 | 0.25 | 0.25 | |
0.30 | 0.30 | 0.30 | 0.30 |
表2 T=750 ℃条件下实验工况参数设置
Tab. 2 Experimental working condition parameter setting at 750 ℃
参数 | 稻壳 | 木屑 | 玉米秸秆 | 稻草 |
---|---|---|---|---|
ER | 0.15 | 0.16 | 0.15 | 0.18 |
0.20 | 0.20 | 0.20 | 0.20 | |
0.25 | 0.25 | 0.25 | 0.25 | |
0.30 | 0.30 | 0.30 | 0.30 |
参数 | 稻壳 | 木屑 | 玉米秸秆 | 稻草 |
---|---|---|---|---|
T/℃ | 720 | 720 | 690 | 690 |
750 | 760 | 720 | 720 | |
780 | 800 | 750 | 750 | |
810 | — | 780 | 780 |
表3 ER=0.2条件下实验工况参数设置
Tab. 2 Experimental working condition parameter setting under ER=0.2 condition
参数 | 稻壳 | 木屑 | 玉米秸秆 | 稻草 |
---|---|---|---|---|
T/℃ | 720 | 720 | 690 | 690 |
750 | 760 | 720 | 720 | |
780 | 800 | 750 | 750 | |
810 | — | 780 | 780 |
1 | 郑妍,姚宣,陈训强 .生物质气化耦合发电体系的合成气组分与能量分析[J].发电技术,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 |
ZHENG Y, YAO X, CHEN X Q,et al .Analysis of syngas components and energy in biomass gasification coupled power generation system[J].Power Generation Technology,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 | |
2 | 王永利,韩煦,刘晨,等 .基于生-光耦合利用的乡村电-热综合能源系统规划[J].电力建设,2023,44(3):1-14. |
WANG Y L, HAN X, LIU C,et al .Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J].Electric Power Construction,2023,44(3):1-14. | |
3 | 朱骏杰,管俊豪,岳子尧,等 .燃煤机组直接耦合生物质的模型构建与碳减排分析[J].内蒙古电力技术,2023,41(6):17-25. |
ZHU J J, GUAN J H, YUE Z Y,et al .Model construction and carbon emission reduction analysis of direct coupling of biomass in coal-fired unit[J].Inner Mongolia Electric Power,2023,41(6):17-25. | |
4 | 臧海祥,马铭欣,周亦洲,等 .电力市场环境下风电-光热-生物质混合电站鲁棒优化调度模型[J].电力系统保护与控制,2022,50(5):1-11. |
ZANG H X, MA M X, ZHOU Y Z,et al .Robust optimal scheduling model for a wind power-concentrating solar power-biomass hybrid power plant in the electricity market[J].Power System Protection and Control,2022,50(5):1-11. | |
5 | CHEN X .Economic potential of biomass supply from crop residues in China[J].Applied Energy,2016,166:141-149. doi:10.1016/j.apenergy.2016.01.034 |
6 | QIN Z C, ZHUANG Q L, CAI X M,et al .Biomass and biofuels in China:toward bioenergy resource potentials and their impacts on the environment[J].Renewable & Sustainable Energy Reviews,2018,82:2387-2400. doi:10.1016/j.rser.2017.08.073 |
7 | 国家能源局 .生物质能发展“十三五”规划[EB/OL].(2018-02-05)[2023-02-25].. |
National Energy Administration .13th Five-Year Plan of biomass energy development[EB/OL].(2018-02-05) [2023-02-25].. | |
8 | HE J, LIU Y, LIN B .Should China support the development of biomass power generation[J].Energy,2018,163:416-425. doi:10.1016/j.energy.2018.08.136 |
9 | 姚金楠 .我国生物质能源化利用潜力约4.6亿吨标煤[N].中国能源报,2021-09-20(19). |
YAO J N .China’s biomass,equivalent to 460 million tons of standard coal,have the enormous potential for energy utilization[N].China Energy News,2021-09-20(19). | |
10 | 毛健雄 .燃煤耦合生物质发电[J].分布式能源,2017,2(5):47-54. |
MAO J X .Co-firing biomass with coal for power generation[J].Distributed Energy,2017,2(5):47-54. | |
11 | MORY A, ZOTTER T.EU-demonstration project BioCoComb for biomass gasification and co-combustion of the product-gas in a coal-fired power plant in Austria[J].Biomass Bioenergy,1998,15(3):239-244. doi:10.1016/s0961-9534(98)00026-9 |
12 | 马务,盛昌栋 .基于循环流化床气化的间接耦合生物质发电技术应用现状[J].热力发电,2019,48(4):1-7. |
MA W, SHENG C D .Application status of indirect biomass co-firing power generation technologies based on circulating fluidized bed gasification[J].Thermal Power Generation,2019,48(4):1-7. | |
13 | BASU P .Biomass gasification,pyrolysis and torrefaction[M].3d Edition. Academic Press,2018:393-413. doi:10.1016/b978-0-12-812992-0.00011-x |
14 | LOHA C, CHATTOPADHYAY H, CHATTERJEE PK,et al .Co-firing of biomass to reduce CO2 emission[M].Amsterdam,The Netherlands:Elsevier,2020:1-10. doi:10.1016/b978-0-12-803581-8.11006-9 |
15 | MIRMOSHTAGHI G, SKVARIL C, CAMPANA E P,et al .The influence of different parameters on biomass gasification in circulating fluidized bed gasifiers[J].Energy Conversion & Management,2016,126:110-123. doi:10.1016/j.enconman.2016.07.031 |
16 | WAHYUDI H, ROSYADI I, PINEM M P .Eulerian multi-fluid simulation of biomass gasification in circulating fluidized beds:effects of equivalence ratio[J].IOP Conference Series of Mater Science Engineering,2019,508:12067. doi:10.1088/1757-899x/508/1/012067 |
17 | 何深宇 .循环流化床稻壳气化特性模拟研究[D].沈阳:沈阳工程学院,2021. |
HE S Y .Gasification characteristics of rice husk in circulating fluidized bed[D].Shenyang:Shenyang Institute of Engineering,2021. | |
18 | MIAO Q, ZHU J, BARGHI S,et al .Modeling biomass gasification in circulating fluidized beds[J].International Journal of Energy & Power,2013,2(3):57-63. |
19 | ZHOU Z, MA L, YIN X,et al .Study on biomass circulation and gasification performance in a clapboard-type internal circulating fluidized bed gasifier[J].Biotechnology Advances,2009,27(5):612-615. doi:10.1016/j.biotechadv.2009.04.016 |
20 | 董磊,常加富,杜巍涛,等 .废食用菌棒循环流化床气化试验[J].化工进展,2020,39(7):2606-2611. doi:10.16085/j.issn.1000-6613.2019-1792 |
DONG L, CHANG J F, DU W T,et al .Experiment of gasification of edible fungi residues in circulating fluidized-bed[J].Chemical Industry and Engineering Progress,2020,39(7):2606-2611. doi:10.16085/j.issn.1000-6613.2019-1792 | |
21 | 高峰 .棉花杆颗粒循环流化床气化特性研究[D].杭州:浙江大学,2018. |
GAO F .Gasification characteristics of cotton rod pellets in circulating fluidized bed[D].Hangzhou:Zhejiang University,2018. | |
22 | 常加富,徐鹏举,刘兆远,等.玉米秸秆循环流化床气化炉气化工艺参数优化[J].农业工程学报,2019,35(5):226-233. doi:10.11975/j.issn.1002-6819.2019.05.028 |
CHANG J F, XU P J, LIU Z Y,et al .Process parameter optimization for gasification of corn stalk in circulating fluidized bed gasifier[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(5):226-233. doi:10.11975/j.issn.1002-6819.2019.05.028 | |
23 | 陈雨佳 .典型生物质循环流化床气化特性实验研究[D].杭州:浙江大学,2019. |
CHENY J .Experimental research on typical biomass gasification characteristics in a circulated fluidized bed[D].Hangzhou:Zhejiang University,2019. | |
24 | GÁLVEZ-PÉREZ A, MARTÍN-LARA M, CALERO M,et al .Experimental investigation on the air gasification of olive cake at low temperatures[J].Fuel Processing Technology,2021,213:106703. doi:10.1016/j.fuproc.2020.106703 |
25 | 叶超 .煤炭部分气化分级转化关键技术的研究[D].杭州:浙江大学,2018. doi:10.1016/j.applthermaleng.2017.11.071 |
YE C .Research on the key issue of coal partial gasification technology[D].Hangzhou:Zhejiang University,2018. doi:10.1016/j.applthermaleng.2017.11.071 | |
26 | 陈雨佳,王勤辉,王中霞,等 .秸秆循环流化床空气气化特性的实验研究[J].动力工程学报,2019,39(10):847-852. |
CHEN Y J,W ANG Q H, WANG Z X,et al .Experimental research on straw gasification characteristics in a circulated fluidized bed[J].Journal of Chinese Society of Power Engineering,2019,39(10):847-852. | |
27 | .Proximate analysis of coal [S].Beijing:Standards Press of China,2008. doi:10.1007/s12404-008-0043-z |
28 | .Ultimate analysis of coal [S].Beijing:Standards Press of China,2015. doi:10.1002/9781119037699.ch6 |
29 | SKOULOU V, KOUFODIMOS G, SAMARAS Z,et al .Low temperature gasification of olive kernels in a 5 kW fluidized bed reactor for H2-rich producer gas[J].International Journal of Hydrogen Energy,2008,33(22):6515-6524. doi:10.1016/j.ijhydene.2008.07.074 |
30 | XIE H, YU Q, QIN Q,et al .Study on pyrolysis characteristics and kinetics of biomass and its components[J].Journal of Renewable & Sustainable Energy,2013,5(1):493. doi:10.1063/1.4792845 |
[1] | 罗勇军, 李建波, 朱红燕. 生物质合成灰的烧结熔融特性和矿物转变规律实验研究[J]. 发电技术, 2024, 45(4): 600-610. |
[2] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
[3] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[4] | 邓启刚, 吕卓, 石友, 鲁佳易, 周旭, 王奥宇, 杨冬. 不带外置床的700 MW超超临界循环流化床锅炉失电后水冷壁安全计算分析[J]. 发电技术, 2024, 45(2): 240-249. |
[5] | 蒋海威, 高明明, 李杰, 于浩洋, 岳光溪, 黄中. 生物质振动炉排炉燃烧过程建模及动态特性分析[J]. 发电技术, 2024, 45(2): 250-259. |
[6] | 邓飞龙, 叶垚, 李阳, 王巧丽, 张俊霞. CO2气氛下杜氏盐藻热解特性的数值研究[J]. 发电技术, 2024, 45(1): 113-119. |
[7] | 郑妍, 姚宣, 陈训强. 生物质气化耦合发电体系的合成气组分与能量分析[J]. 发电技术, 2023, 44(6): 859-864. |
[8] | 董中豪, 卢啸风, 史丽超, 杨增增, 孔繁盛, 王鹏, 林国强, 赵鹏. 炉膛耐火材料热惯性对循环流化床锅炉调峰速率的影响[J]. 发电技术, 2023, 44(4): 514-524. |
[9] | 王洪健, 王海洋, 孔皓, 周托, 张缦, 杨海瑞. 135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J]. 发电技术, 2022, 43(6): 918-926. |
[10] | 薛凯, 王义函, 陈衡, 徐钢, 雷兢. 槽式太阳能辅助生物质热电联产系统热力学性能分析[J]. 发电技术, 2021, 42(6): 653-664. |
[11] | 牛斌, 李丽锋, 孙倩, 张培华. 超临界循环流化床机组全负荷段深度调峰方法研究[J]. 发电技术, 2021, 42(2): 273-279. |
[12] | 邱国华, 徐鹏志. 掺烧固废燃料的循环流化床锅炉引风机叶片腐蚀原因分析[J]. 发电技术, 2020, 41(6): 681-688. |
[13] | 任少辉,胡晓炜,胡灿,赵渊,李跃峰. 生物质直燃电厂余热在农业中的应用[J]. 发电技术, 2020, 41(2): 206-209. |
[14] | 韩峰,丛堃林,李清海,张衍国,严矫平,胡峰. 多流程循环流化床技术在综合能源服务中的应用[J]. 发电技术, 2020, 41(2): 104-109. |
[15] | 李克勋,宗明珠,魏高升. 地热能及与其他新能源联合发电综述[J]. 发电技术, 2020, 41(1): 79-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||