发电技术 ›› 2022, Vol. 43 ›› Issue (4): 562-573.DOI: 10.12096/j.2096-4528.pgt.22090
叶航, 郝宁, 刘琦
收稿日期:
2022-05-05
出版日期:
2022-08-31
发布日期:
2022-09-06
作者简介:
基金资助:
Hang YE, Ning HAO, Qi LIU
Received:
2022-05-05
Published:
2022-08-31
Online:
2022-09-06
Supported by:
摘要:
CO2咸水层封存作为碳捕集、利用与封存(carbon capture, utilization and storage,CCUS)技术的重要一环,是实现碳中和目标的有效手段,完善咸水层封存机理研究方案对于准确评估CO2咸水层封存潜力具有重要意义。讨论了CO2咸水层封存机理,总结了实验过程中常用的表征技术,论述了不同参数对咸水层封存的影响,并对该技术的未来发展做出了展望。针对不同的封存机理研究,咸水层封存的表征技术主要包括储层岩石表征、岩心驱替实验、溶解性实验、矿化反应实验等。CO2咸水层封存潜力受残余水饱和度、残余气饱和度、溶解度和盐析程度等多个参数的影响,因此选用合适的表征技术确定相关参数对于确保封存潜力评估的准确性至关重要。此外,开展全过程封存机理分析和海上咸水层封存项目研究是该技术未来研究的重要方向。
中图分类号:
叶航, 郝宁, 刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术, 2022, 43(4): 562-573.
Hang YE, Ning HAO, Qi LIU. Review on Key Parameters and Characterization Technology of CO2 Sequestration Mechanism in Saline Aquifers[J]. Power Generation Technology, 2022, 43(4): 562-573.
项目名称 | 状态 | 国家 | 投运时间 | 行业 | 最大捕集能力/(Mt/a) | 捕集类型 | 封存类型 |
---|---|---|---|---|---|---|---|
Sleipner | 运行中 | 挪威 | 1996 | 天然气处理 | 0.40 | 工业分离 | 专用地质封存 |
Snøhvit | 运行中 | 挪威 | 2008 | 天然气处理 | 0.70 | 工业分离 | 专用地质封存 |
Quest | 运行中 | 加拿大 | 2015 | 制氢、油砂升级 | 1.20 | 工业分离 | 专用地质封存 |
Illinois Industrial Carbon Capture and Storage | 运行中 | 美国 | 2017 | 乙醇生产 | 1.00 | 工业分离 | 专用地质封存 |
Gorgon Carbon Dioxide | 运行中 | 澳大利亚 | 2019 | 天然气处理 | 4.00 | 工业分离 | 专用地质封存 |
Qatar LNG CCS | 运行中 | 卡塔尔 | 2019 | 天然气处理 | 1.00 | 工业分离 | 专用地质封存 |
神华CCS | 暂时停注 | 中国 | 2010 | 煤制油 | 0.15 | 工业分离 | 专用地质封存 |
表1 国内外CO2咸水层封存案例
Tab. 1 Cases of CO2 sequestration in saline aquifers at home and abroad
项目名称 | 状态 | 国家 | 投运时间 | 行业 | 最大捕集能力/(Mt/a) | 捕集类型 | 封存类型 |
---|---|---|---|---|---|---|---|
Sleipner | 运行中 | 挪威 | 1996 | 天然气处理 | 0.40 | 工业分离 | 专用地质封存 |
Snøhvit | 运行中 | 挪威 | 2008 | 天然气处理 | 0.70 | 工业分离 | 专用地质封存 |
Quest | 运行中 | 加拿大 | 2015 | 制氢、油砂升级 | 1.20 | 工业分离 | 专用地质封存 |
Illinois Industrial Carbon Capture and Storage | 运行中 | 美国 | 2017 | 乙醇生产 | 1.00 | 工业分离 | 专用地质封存 |
Gorgon Carbon Dioxide | 运行中 | 澳大利亚 | 2019 | 天然气处理 | 4.00 | 工业分离 | 专用地质封存 |
Qatar LNG CCS | 运行中 | 卡塔尔 | 2019 | 天然气处理 | 1.00 | 工业分离 | 专用地质封存 |
神华CCS | 暂时停注 | 中国 | 2010 | 煤制油 | 0.15 | 工业分离 | 专用地质封存 |
封存机理 | 表征方法 |
---|---|
构造封存 | CO2-地层水岩心驱替实验 |
残余气封存 | CO2-地层水岩心驱替实验 |
溶解封存 | CO2-地层水溶解性实验 |
矿化封存 | CO2-地层水-岩石矿化反应实验 |
表2 不同封存机理常用表征方法
Tab. 2 Common characterization methods for different storage mechanisms
封存机理 | 表征方法 |
---|---|
构造封存 | CO2-地层水岩心驱替实验 |
残余气封存 | CO2-地层水岩心驱替实验 |
溶解封存 | CO2-地层水溶解性实验 |
矿化封存 | CO2-地层水-岩石矿化反应实验 |
1 | 中国 21 世纪议程管理中心.中国碳捕集、利用与封存技术发展路线图2019[M].北京: 科学出版社, 2019. |
The Administrative Center for China’s Agenda 21.Roadmap for carbon capture, utilization and storage development in China 2019[M].Beijing: China Science Publishing & Media Ltd., 2019. | |
2 | 蔡博峰, 李琦, 张贤,等 .中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R].北京: 生态环境部环境规划院, 2021. |
CAI B F, LI Q, ZHANG X, et al. Annual report on carbon dioxide capture, utilization and storage (CCUS) in China (2021):study on CCUS path in China[R].Beijing: Ministry of Ecological Environment, 2021. | |
3 | 陈昌照, 王万福, 陈宏坤, 等 .二氧化碳咸水层封存的研究现状和问题[J].油气田环境保护, 2013, 23(3): 1-5. doi:10.3969/j.issn.1005-3158.2013.03.001 |
CHEN C Z, WANG W F, CHEN H K, et al .The research status and issues of carbon dioxide sequestration in saline aquifer[J].Environmental Protection of Oil & Gas Fields, 2013, 23(3): 1-5. doi:10.3969/j.issn.1005-3158.2013.03.001 | |
4 | JAYASEKARA D W, RANJITH P G, WANNIARACHCHI W A M, et al .Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: a review study[J].The Journal of Supercritical Fluids, 2020, 161. doi:10.1016/j.supflu.2020.104819 |
5 | DE SILVA G, RANJITH P G, PERERA M .Geochemical aspects of CO2 sequestration in deep saline aquifers: a review[J].Fuel, 2015, 155: 128-143. doi:10.1016/j.fuel.2015.03.045 |
6 | BRAD P .The global status of CCS 2021[M].Australia: The Global CCS Institute, 2021. |
7 | 叶航, 刘琦, 彭勃 .基于二氧化碳驱油技术的碳封存潜力评估研究进展[J].洁净煤技术, 2021, 27(2): 107-116. |
YE H, LIU Q, PENG B .Evaluation of carbon storage potential based on CO2 flooding technology: a review[J].Clean Coal Technology, 2021, 27(2): 107-116. | |
8 | BACHU S, BONIJOLY D, BRADSHAW J, et al .CO2 storage capacity estimation: methodology and gaps[J].International journal of greenhouse gas control, 2007, 1(4): 430-443. doi:10.1016/s1750-5836(07)00086-2 |
9 | GOODMAN A, HAKALA A, BROMHAL G, et al .US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J].International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965. doi:10.1016/j.ijggc.2011.03.010 |
10 | HÖLLER S, VIEBAHN P .Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios[J].Energy Policy, 2016, 89: 64-73. doi:10.1016/j.enpol.2015.10.043 |
11 | BACHU S .Review of CO2 storage efficiency in deep saline aquifers[J].International Journal of Greenhouse Gas Control, 2015, 40: 188-202. doi:10.1016/j.ijggc.2015.01.007 |
12 | AMINU M D, NABAVI S A, ROCHELLE C A, et al .A review of developments in carbon dioxide storage[J].Applied Energy, 2017, 208: 1389-1419. doi:10.1016/j.apenergy.2017.09.015 |
13 | WEI N, LI X, JIAO Z, et al .A hierarchical framework for CO2 storage capacity in deep saline aquifer formations[J].Frontiers in Earth Science, 2022, 9:1-21. doi:10.3389/feart.2021.777323 |
14 | VISHAL V, SINGH T .Geologic carbon sequestration [J].Environ Geosci, 2016, 16:47-133. doi:10.1007/978-3-319-27019-7 |
15 | 李阳 .碳中和与碳捕集利用封存技术进展[M].北京:中国石化出版社, 2021. |
LI Y .Progress in carbon neutralization and carbon capture, utilization and storage technology[M].Beijing: China Petrochemical Press Ltd., 2021. | |
16 | METZ B, DAVIDSON O, DE CONINCK H, et al .IPCC special report on carbon dioxide capture and storage[M].Cambridge: Cambridge University Press, 2005. |
17 | KUMAR S, FOROOZESH J, EDLMANN K, et al .A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers[J].Journal of Natural Gas Science and Engineering, 2020, 81: 103437. doi:10.1016/j.jngse.2020.103437 |
18 | IGLAUER S .Optimum storage depths for structural CO2 trapping[J].International Journal of Greenhouse Gas Control, 2018, 77: 82-87. doi:10.1016/j.ijggc.2018.07.009 |
19 | 李铱, 李旭峰, 沈照理, 等 .CO2地质封存室内实验中盐水种类对残余水形成的影响[J].地学前缘, 2015, 22(4): 312-319. |
LI Y, LI X F, SHEN Z L, et al .The effects of brine species on the formation of residual water in laboratory experiments of CO2 geological storage[J].Earth Science Frontiers, 2015, 22(4): 312-319. | |
20 | NGHIEM L, YANG C, SHRIVASTAVA V, et al .Risk mitigation through the optimization of residual gas and solubility trapping for CO2 storage in saline aquifers[J].Energy Procedia, 2009, 1(1): 3015-3022. doi:10.1016/j.egypro.2009.02.079 |
21 | 李海燕, 彭仕宓, 许明阳, 等 .CO2在深部咸水层中的埋存机制研究进展[J].科技导报, 2013, 31(2): 72-79. |
LI H Y, PENG S M, XU M Y, et al .CO2 storage mechanism in deep saline aquifers[J].Science & Technology Review, 2013, 31(2): 72-79. | |
22 | 武爱兵, 李铱, 常春, 等 .不同成分盐水驱CO2的残余气饱和度[J].现代地质, 2014, 28(5): 1061-1067. doi:10.3969/j.issn.1000-8527.2014.05.023 |
WU A B, LI Y, CHANG C, et al .The residual gas saturation of different components of saline flooding CO2 [J].Geoscience, 2013, 31(2): 72-79. doi:10.3969/j.issn.1000-8527.2014.05.023 | |
23 | BACHU S .CO2 storage in geological media: role, means, status and barriers to deployment[J].Progress in energy and combustion science, 2008, 34(2): 254-273. doi:10.1016/j.pecs.2007.10.001 |
24 | KUMAR A, NOH M, SEPEHRNOORI K, et al .Carbon dioxide dapture for storage in deep geologic formations-results from the CO2 capture project[M].Amsterdam: Elsevier Science, 2005. doi:10.1016/b978-008044570-0/50140-9 |
25 | DE SILVA P N K, RANJITH P .A study of methodologies for CO2 storage capacity estimation of saline aquifers[J].Fuel, 2012, 93: 13-27. doi:10.1016/j.fuel.2011.07.004 |
26 | SUEKANE T, NOBUSO T, HIRAI S, et al .Geological storage of carbon dioxide by residual gas and solubility trapping[J].International Journal of Greenhouse Gas Control, 2008, 2(1): 58-64. doi:10.1016/s1750-5836(07)00096-5 |
27 | BENSON S M, COLE D R .CO2 sequestration in deep sedimentary formations[J].Elements, 2008, 4(5): 325-331. doi:10.2113/gselements.4.5.325 |
28 | MENG Q, JIANG X .Numerical analyses of the solubility trapping of CO2 storage in geological formations[J].Applied energy, 2014, 130: 581-591. doi:10.1016/j.apenergy.2014.01.037 |
29 | GARCIA S, LIU Q, BACON D H, et al .An investigation of reaction parameters on geochemical storage of non-pure CO2 streams in iron oxide-bearing formations[J].Fuel processing technology, 2014, 128: 402-411. doi:10.1016/j.fuproc.2014.07.027 |
30 | LIU Q, MAROTO-VALER M M. Studies of pH buffer systems to promote carbonate formation for CO2 sequestration in brines[J].Fuel Processing Technology, 2012, 98: 6-13. doi:10.1016/j.fuproc.2012.01.023 |
31 | LIU Q, MAROTO-VALER M M .Investigation of the pH effect of a typical host rock and buffer solution on CO2 sequestration in synthetic brines[J].Fuel Processing Technology, 2010, 91(10): 1321-1329. doi:10.1016/j.fuproc.2010.05.002 |
32 | WANG D, DONG B, BREEN S, et al .Approaches to research on CO2/brine two-phase migration in saline aquifers[J].Hydrogeology Journal, 2015, 23(1): 1-18. doi:10.1007/s10040-014-1186-1 |
33 | MURUGESU M P, PRASAD M, PYLYPENKO S .Surface and bulk characterization of reservoir and cap-rocks: Past, present, and future[J].Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020, 38(5): 050801. doi:10.1116/6.0000319 |
34 | 甘满光, 缪秀秀, 张力为, 等 .CT扫描技术在二氧化碳地质利用与封存领域的应用研究综述[J].水利水电技术, 2019, 50(8): 174-184. doi:10.1130/abs/2019am-333827 |
GAN M G, MIAO X X, ZHANG L W, et al .Review on applications of CT scanning technique in the field of CO2 geological utilization and storage[J].Water Resources and Hydropower Engineering,2019,50(8): 174-184. doi:10.1130/abs/2019am-333827 | |
35 | SUN Y, LI Q, YANG D, et al .Laboratory core flooding experimental systems for CO2 geosequestration: an updated review over the past decade[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(1): 113-126. doi:10.1016/j.jrmge.2015.12.001 |
36 | SPYCHER N, PRUESS K .CO2-H2O mixtures in the geological sequestration of CO2.Ⅱ.partitioning in chloride brines at 12-100 ℃ and up to 600 bar[J].Geochimica et Cosmochimica Acta, 2005, 69(13): 3309-3320. doi:10.1016/j.gca.2005.01.015 |
37 | DE SILVA P N K, RANJITH P .Advanced core flooding apparatus to estimate permeability and storage dynamics of CO2 in large coal specimens[J].Fuel, 2013, 104: 417-425. doi:10.1016/j.fuel.2012.09.012 |
38 | EDLMANN K, HASZELDINE S, MCDERMOTT C .Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow[J].Environmental earth sciences, 2013, 70(7): 3393-3409. doi:10.1007/s12665-013-2407-y |
39 | AKBARABADI M, PIRI M .Co-sequestration of SO2 with supercritical CO2 in carbonates: an experimental study of capillary trapping, relative permeability, and capillary pressure[J].Advances in Water Resources, 2015, 77: 44-56. doi:10.1016/j.advwatres.2014.08.011 |
40 | MENKE H P, BIJELJIC B, ANDREW M G, et al .Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions[J].Environmental Science & Technology, 2015, 49(7): 4407-4414. doi:10.1021/es505789f |
41 | MA J, PETRILLI D, MANCEAU J C, et al .Core scale modelling of CO2 flowing: identifying key parameters and experiment fitting[J].Energy Procedia, 2013, 37: 5464-5472. doi:10.1016/j.egypro.2013.06.466 |
42 | ZHANG Y, KOGURE T, CHIYONOBU S, et al .Influence of heterogeneity on relative permeability for CO2/brine: CT observations and numerical modeling[J].Energy Procedia, 2013, 37: 4647-4654. doi:10.1016/j.egypro.2013.07.241 |
43 | IGLAUER S .Dissolution trapping of carbon dioxide in reservoir formation brine-a carbon storage mechanism[M].INTECH Open Access Publisher, 2011. doi:10.2174/978160805228811201010135 |
44 | 王军良, 李桂璇, 周义明, 等 .二氧化碳在油气田地质封存中溶解物性的研究进展[J].油田化学, 2018, 35(3): 550-561. |
WANG J L, LI G X, ZHOU Y M, et al .Review on dissolved physical properties of carbon dioxide in geological storage of oil and gas fields[J].Oilfield Chemistry, 2018, 35(3): 550-561. | |
45 | REZK M G, FOROOZESH J, ABDULRAHMAN A, et al .CO2 Diffusion and Dispersion in Porous Media: Review of Advances in Experimental Measurements and Mathematical Models[J].Energy & Fuels, 2021,36(1): 133-155. doi:10.1021/acs.energyfuels.1c03552 |
46 | RIMMELE G, BARLET-GOUEDARD V, RENARD F .Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geological storage at 3 km depth[J].Oil & Gas Science and Technology-Revue de l’Institut Français du Pétrole, 2010, 65(4): 565-580. doi:10.2516/ogst/2009071 |
47 | 索瑞厅, 李旭峰, 高鹏宇, 等 .温度压力对岩心尺度CO2-水-岩系统中残余水影响的实验研究[J].中国电机工程学报, 2021, 41(11): 3711-3722. |
SUO R T, LI X F, GAO P Y, et al..Experimental study on the effects of temperature and pressure on residual water in the CO2-H2O-rock system of core-scale[J].Proceedings of the CSEE, 2021, 41(11): 3711-3722. | |
48 | LI Y, RANJITH P, PERERA M, et al .Residual water formation during the CO2 storage process in deep saline aquifers and factors influencing it: a review[J].Journal of CO2 Utilization, 2017, 20: 253-262. doi:10.1016/j.jcou.2017.05.022 |
49 | IGLAUER S, MATHEW M, BRESME F .Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration[J].Journal of Colloid and Interface Science, 2012, 386(1): 405-414. doi:10.1016/j.jcis.2012.06.052 |
50 | SARAJI S, PIRI M, GOUAL L .The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems[J].International Journal of Greenhouse Gas Control, 2014, 28: 147-155. doi:10.1016/j.ijggc.2014.06.024 |
51 | LI Y, WU A, ZHANG C, et al .The effects of quartz content on the formation of residual water in a brine-CO2-quartz system: an experimental study[J].Journal of Natural Gas Science and Engineering, 2015, 27: 1609-1619. doi:10.1016/j.jngse.2015.10.027 |
52 | REYNOLDS C, BLUNT M, KREVOR S .Impact of reservoir conditions on CO2-brine relative permeability in sandstones[J].Energy Procedia, 2014, 63: 5577-5585. doi:10.1016/j.egypro.2014.11.591 |
53 | BACHU S .Drainage and imbibition CO2/brine relative permeability curves at in situ conditions for sandstone formations in western Canada[J].Energy Procedia, 2013, 37: 4428-4436. doi:10.1016/j.egypro.2013.07.001 |
54 | SZULCZEWSKI M, MACMINN C, JUANES R .Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers[J].International Journal of Greenhouse Gas Control, 2014, 23: 113-118. doi:10.1016/j.ijggc.2014.02.006 |
55 | 罗强, 孙雷, 李士伦, 等 .水驱气藏残余气饱和度研究综述[J].内蒙古石油化工, 2016, 42(10): 134-139. doi:10.3969/j.issn.1006-7981.2016.10.049 |
LUO Q, SUN L, LI S L, et al .Review on residual gas saturation in water-flooding gas reservoir[J].Inner Mongolia Petrochemical Industry, 2016, 42(10): 134-139. doi:10.3969/j.issn.1006-7981.2016.10.049 | |
56 | ZAPATA Y, KRISTENSEN M R, HUERTA N, et al .CO2 geological storage: critical insights on plume dynamics and storage efficiency during long-term injection and post-injection periods[J].Journal of Natural Gas Science and Engineering,2020,83:103542. doi:10.1016/j.jngse.2020.103542 |
57 | ALI M, ARIF M, SAHITO M F, et al .CO2-wettability of sandstones exposed to traces of organic acids: implications for CO2 geo-storage[J].International Journal of Greenhouse Gas Control, 2019, 83: 61-8. doi:10.1016/j.ijggc.2019.02.002 |
58 | ZHAO C, SONG Y, CHEN M, et al .Micro/nanoscale heat and mass transfer[C]// ASME 2019 6th International Conference, 2019. doi:10.1115/mnhmt2019-4256 |
59 | RASMUSSON K, RASMUSSON M, TATOMIR A, et al .Exploring residual CO2 trapping in Heletz sandstone using pore-network modeling and a realistic pore-space topology obtained from a micro-CT scan[J].Greenhouse Gases: Science and Technology, 2021, 11(5): 907-923. doi:10.1002/ghg.2100 |
60 | RASMUSSON K, RASMUSSON M, TSANG Y, et al .Residual trapping of carbon dioxide during geological storage:insight gained through a pore-network modeling approach[J].International Journal of Greenhouse Gas Control, 2018, 74: 62-78. doi:10.1016/j.ijggc.2018.04.021 |
61 | XU L, LI Q, MYERS M, et al .Migration of carbon dioxide in sandstone under various pressure/temperature conditions: from experiment to simulation[J].Greenhouse Gases: Science and Technology,2022, 12(2): 233-248. doi:10.1002/ghg.2140 |
62 | KAMAL M S, ADEBAYO A R, FOGANG L T, et al .Improving gas sequestration by surfactant-alternating- gas injection: a comparative evaluation of the surfactant type and concentration[J].Journal of Surfactants and Detergents, 2018, 21(5): 667-675. doi:10.1002/jsde.12162 |
63 | BAKHSHIAN S .Dynamics of dissolution trapping in geological carbon storage[J].International Journal of Greenhouse Gas Control, 2021, 112: 103520. doi:10.1016/j.ijggc.2021.103520 |
64 | WAN Y, DU S, LIN G, et al .Dissolution sequestration mechanism of CO2 at the Shiqianfeng saline aquifer in the Ordos Basin, northwestern China[J].Arabian Journal of Geosciences, 2017, 10(3): 1-13. doi:10.1007/s12517-017-2858-7 |
65 | RAAD S M J, HASSANZADEH H .Does impure CO2 impede or accelerate the onset of convective mixing in geological storage?[J].International Journal of Greenhouse Gas Control, 2016, 54: 250-257. doi:10.1016/j.ijggc.2016.09.011 |
66 | RAAD S M J, HASSANZADEH H .Prospect for storage of impure carbon dioxide streams in deep saline aquifers:a convective dissolution perspective[J].International Journal of Greenhouse Gas Control, 2017, 63: 350-355. doi:10.1016/j.ijggc.2017.06.011 |
67 | HAN W S, KIM K Y, ESSER R P, et al .Sensitivity study of simulation parameters controlling CO2 trapping mechanisms in saline formations[J].Transport in Porous Media, 2011, 90(3): 807-829. doi:10.1007/s11242-011-9817-7 |
68 | 胡丽莎, 常春, 于青春 .鄂尔多斯盆地山西组地下咸水CO2溶解能力[J].地球科学(中国地质大学学报), 2012, 37(2): 301-306. |
HU L S, CHANG C, YU Q C .CO2 solubility in Shanxi formation water of ordos basin[J].Earth Science, 2012, 37(2): 301-306. | |
69 | 王璐, 于青春 .地下咸水中Ca2+和Mg2+对CO2溶解度的影响[J].水文地质工程地质, 2015, 42(5): 22-28. |
WANG L, YU Q C .The effect of Ca2+ and Mg2+ on the solubility of CO2 in the formation brines[J].Hydrogeology & Engineering Geology, 2015, 42(5): 22-28. | |
70 | REZK M G, FOROOZESH J .Study of convective- diffusive flow during CO2 sequestration in fractured heterogeneous saline aquifers[J].Journal of Natural Gas Science and Engineering, 2019, 69: 102926. doi:10.1016/j.jngse.2019.102926 |
71 | MIRI R, HELLEVANG H .Salt precipitation during CO2 storage:a review[J].International Journal of Greenhouse Gas Control, 2016, 51: 136-147. doi:10.1016/j.ijggc.2016.05.015 |
72 | GRUDE S, DVORKIN J, CLARK A .Pressure effects caused by CO2 injection in the snøhvit field[J].First Break, 2013,31(12):99. doi:10.3997/1365-2397.31.12.72203 |
73 | ANDRE L, PEYSSON Y, AZAROUAL M .Well injectivity during CO2 storage operations in deep saline aquifers-Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces[J].International Journal of Greenhouse Gas Control, 2014, 22: 301-312. doi:10.1016/j.ijggc.2013.10.030 |
74 | EDEM D E, ABBA M K, NOURIAN A, et al .Experimental study on the interplay between different brine types/concentrations and CO2 injectivity for effective CO2 storage in deep saline aquifers[J].Sustainability, 2022, 14(2): 986. doi:10.3390/su14020986 |
75 | YUSOF M A M, NEUYAM Y A S, IBRAHIM M A, et al .Experimental study of CO2 injectivity impairment in sandstone due to salt precipitation and fines migration[J].Journal of Petroleum Exploration and Production Technology, 2022: 1-12. doi:10.1007/s13202-022-01453-w |
76 | 高志豪, 赵锐锐, 成建梅 .砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟:以鄂尔多斯盆地为例[J].地质科技通报, 2022, 41(1): 269-277. |
GAO Z H, ZHAO R R, CHENG J M .Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: a case study of ordos basin[J].Bulletin of Geological Science and Technology, 2022, 41(1): 269-277. |
[1] | 孙宇航, 李超, 王争荣, 孙路长, 王凯亮, 胡昔鸣, 方梦祥, 张锋. 甲基二乙醇胺-二元胺混合体系烟气CO2吸收再生性能研究[J]. 发电技术, 2024, 45(3): 468-477. |
[2] | 冷喜武, 刘闯, 何蕾, 邢健. 可调节负荷并网运行标准研究与应用[J]. 发电技术, 2022, 43(6): 834-842. |
[3] | 王宁, 陈志强, 刘明义, 张鹏, 曹曦, 陆泽宇, 雷浩东, 曹传钊, 严晓, 周国鹏. 基于模糊综合评价的锂离子电池健康状态评估[J]. 发电技术, 2022, 43(5): 784-791. |
[4] | 高小童, 秦志龙, 高新宇. 含海上风电-光伏-储能的多能源发输电系统可靠性评估[J]. 发电技术, 2022, 43(4): 626-635. |
[5] | 李振山, 陈虎, 李维成, 刘磊, 蔡宁生. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561. |
[6] | 董瑞, 高林, 何松, 杨东泰. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4): 523-532. |
[7] | 陈晓光, 杨秀媛, 卜思齐, 徐智蔷. 考虑经济功能性的风电场储能系统容量配置[J]. 发电技术, 2022, 43(2): 341-352. |
[8] | 黄雅琨, 刘进一, 张筱松. 基于高温质子交换膜燃料电池和全钒液流电池的离网能源系统的配置优化[J]. 发电技术, 2022, 43(2): 305-312. |
[9] | 冯前伟, 朱仁涵, 徐思达, 刘博, 张杨, 王丰吉, 朱跃. 1 000 MW燃煤机组SCR超低排放关键参数性能评估与分析[J]. 发电技术, 2022, 43(1): 168-174. |
[10] | 高鑫, 唐飞, 张童彦, 李宇. 配电网防风抗灾加固措施优化决策方法[J]. 发电技术, 2021, 42(1): 78-85. |
[11] | 温佳鑫, 卜思齐, 陈麒宇, 周博文. 基于数据学习的新能源高渗透电网频率风险评估[J]. 发电技术, 2021, 42(1): 40-47. |
[12] | 李国庆,崔崇,何青. 正暖和倒暖启动对汽轮机组寿命的影响研究[J]. 发电技术, 2019, 40(6): 580-586. |
[13] | 王智博,王茜茹,代勇,夏天,张倩,李卫东. 大用户直接交易合同执行风险评估[J]. 发电技术, 2019, 40(5): 455-461. |
[14] | 马世英,郭逸豪,宋墩文,郭创新. 计及级联失效的电力信息系统脆弱性评估[J]. 发电技术, 2018, 39(3): 226-232. |
[15] | 肖白,赵殿平,姜卓,施永刚,焦明曦. 城市配电网供电能力评估综述[J]. 发电技术, 2018, 39(3): 213-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||