发电技术 ›› 2023, Vol. 44 ›› Issue (4): 514-524.DOI: 10.12096/j.2096-4528.pgt.22175

• 发电及环境保护 • 上一篇    下一篇

炉膛耐火材料热惯性对循环流化床锅炉调峰速率的影响

董中豪1, 卢啸风1, 史丽超2, 杨增增2, 孔繁盛2, 王鹏2, 林国强3, 赵鹏3   

  1. 1.低品位能源利用技术及系统教育部重点实验室(重庆大学),重庆市 沙坪坝区 400044
    2.黄陵矿业煤矸石发电有限公司,陕西省 延安市 727307
    3.宜兴市国强炉业有限公司,江苏省 宜兴市 214225
  • 收稿日期:2022-03-07 出版日期:2023-08-31 发布日期:2023-08-29
  • 通讯作者: 卢啸风
  • 作者简介:董中豪(1998),男,博士研究生,主要从事流化床锅炉相关研究,dongzhonghao@cqu.edu.cn
    卢啸风(1962),男,博士,教授,主要从事流化床锅炉相关研究,xfluke@cqu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB4100301)

Influence of Thermal Inertia of Refractory Material in Furnace on the Peak Regulating Rate of Circulating Fluidized Bed Boiler

Zhonghao DONG1, Xiaofeng LU1, Lichao SHI2, Zengzeng YANG2, Fansheng KONG2, Peng WANG2, Guoqiang LIN3, Peng ZHAO3   

  1. 1.Key Laboratory of Low-Grade Energy Utilization Technology & System, Ministry of Education (Chongqing University), Shapingba District, Chongqing 400044, China
    2.Huangling Mining Group Co. , Ltd. , Yan’an 727307, Shaanxi Province, China
    3.Yixing Guoqiang Furnace Industry Co. , Ltd. , Yixing 214225, Jiangsu Province, China
  • Received:2022-03-07 Published:2023-08-31 Online:2023-08-29
  • Contact: Xiaofeng LU
  • Supported by:
    National Key R&D Program of China(2022YFB4100301)

摘要:

为研究炉膛耐火材料热惯性对循环流化床(circulating fluidized bed,CFB)锅炉调峰特性的影响,基于300 MW亚临界CFB锅炉实际运行工况,以数值计算方式对其进行了研究。发现耐火材料热惯性受耐火材料导热系数和耐火材料厚度影响。当耐火材料导热系数由1 W/(m?K)增加到15 W/(m?K)时,耐火材料热平衡时间由5 812 s降低到3 426 s;耐火材料厚度由30 mm增大至90 mm时,热平衡时间由3 267 s增加到7 771 s。实炉按1%/min、2%/min、3%/min速率由50%升至100%额定负荷工况时,若密相区采用传统耐火材料,则平衡时间分别为82、65、60 min;当采用高导热耐火材料,则相应减少到65、46、40 min。根据计算结果拟合了耐火材料吸热速率变化公式;为考察密相区耐火材料热惯性对给煤策略的影响,定义并计算了耐火材料热惯性给煤影响系数。

关键词: 循环流化床, 调峰, 热惯性, 导热系数

Abstract:

The influence of thermal inertia of the furnace refractory on the peak regulation characteristics of a 300 MW circulating fluidized bed boiler (CFB) was studied by using a numerical calculation method. Based on the actual operation conditions of the boiler, the calculation results reveal that the thermal inertia of refractory is affected by its thermal conductivity and the thickness. Specifically, the thermal inertia of refractory decreases with the increasing thermal conductivity and decreasing refractory thickness. As a consequence, the time that required for the refractory to reach heat equilibrium decreases from 5 812 s to 3 426 s if the thermal conductivity of refractory increases from 1 W/(m?K) to 15 W/(m?K), while it increases from 3 267 s to 7 771 s if the thickness of refractory material increases from 30 mm to 90 mm. Practically in the presence of the traditional refractory in the CFB dense phase zone, the time required to achieve heat equilibrium state becomes 82, 65 and 60 min when the load of this CFB boiler rises from 50% to 100% with a rate of 1%/min, 2%/min and 3%/min. For a refractory with higher thermal conductivity, the equilibrium response time will be reduced to 65, 46 and 40 min, correspondingly. According to the calculation results, a formula for the heat absorption rate of refractory material was obtained. In addition, the influencing coefficient of the thermal inertia of refractory on coal feeding was also defined and calculated.

Key words: circulating fluidized bed (CFB), peak regulation, thermal inertia, thermal conductivity

中图分类号: