发电技术 ›› 2021, Vol. 42 ›› Issue (5): 537-546.DOI: 10.12096/j.2096-4528.pgt.21074
收稿日期:
2021-06-07
出版日期:
2021-10-31
发布日期:
2021-10-13
通讯作者:
李慷
作者简介:
李沂洹(1992), 女, 博士研究生, 研究方向为电池管理、状态估计等, elyli2@leeds.ac.uk
基金资助:
Yihuan LI1(), Kang LI1,*(
), James YU2
Received:
2021-06-07
Published:
2021-10-31
Online:
2021-10-13
Contact:
Kang LI
Supported by:
摘要:
电池储能系统是实现碳中和最重要、最有效的手段之一,其大规模应用对电池运行过程中的安全性提出了更高的要求。实时准确的电池状态估计为保障电池的安全稳定运行提供重要信息,是电池管理系统(battery management system,BMS)的一项重要功能。然而,由于复杂的操作条件和电池内部的电化学反应,很难准确地评估电池的内部状态。针对电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)这2个电池系统中的重要参数,系统回顾了当前常用的SOC和SOH估计方法,总结了各种方法的特点及其在实际应用中所面临的主要挑战,并在此基础上对电池SOC和SOH估计技术未来的发展提出展望,为电池状态估计技术的进一步研究提供参考依据。
中图分类号:
李沂洹, 李慷, 余渐. 锂离子电池荷电状态与健康状态估计方法[J]. 发电技术, 2021, 42(5): 537-546.
Yihuan LI, Kang LI, James YU. Estimation Approaches for States of Charge and Health of Lithium-ion Battery[J]. Power Generation Technology, 2021, 42(5): 537-546.
1 | 阮绵晖, 郑建平, 刘尧, 等. 离网直流微网群混合储能容量优化配置方法[J]. 电力工程技术, 2021, 40 (3): 99- 105. |
RUAN M H , ZHENG J P , LIU R , et al. Optimization configuration method for hybrid energy storage capacity of independent DC microgrid cluster[J]. Electric Power Engineering Technology, 2021, 40 (3): 99- 105. | |
2 |
严海波, 康林贤, 周冬. 考虑随机性的微电网日前调度与储能优化模型[J]. 电网与清洁能源, 2019, 35 (11): 61- 65.
DOI |
YAN H B , KANG L X , ZHOU D . Optimal model of day-ahead dispatching and energy storage for micro-grid considering randomness[J]. Power System and Clean Energy, 2019, 35 (11): 61- 65.
DOI |
|
3 | TSIROPOULOS I, TARVYDAS D, LEBEDEVA N. Li-ion batteries for mobility and stationary storage applications scenarios for costs and market growth[R]. Luxembourg: Publications Office of the European Union, 2018. |
4 | 蒋燕萍, 陈佩军, 陈海燕. 电动汽车集约型换电设施的设计研究[J]. 发电技术, 2019, 40 (6): 535- 539. |
JIANG Y P , CHEN P J , CHEN H Y . Research and design on intensive power exchange facility of electric vehicles[J]. Power Generation Technology, 2019, 40 (6): 535- 539. | |
5 | 耿健, 杨冬梅, 高正平, 等. 含储能的冷热电联供分布式综合能源微网优化运行[J]. 电力工程技术, 2021, 40 (1): 25- 32. |
GENG J , YANG D M , GAO Z P , et al. Optimal operation of distributed integrated energy microgrid with CCHP considering energy storage[J]. Electric Power Engineering Technology, 2021, 40 (1): 25- 32. | |
6 |
禹海峰, 潘力强, 吴亚茹, 等. 储能提升含高比例风电电力系统可靠性分析[J]. 电网与清洁能源, 2020, 36 (6): 92- 98.
DOI |
YU H F , PAN L Q , WU Y R , et al. Analysis of energy storage improving the reliability of power system with high proportional wind power[J]. Power System and Clean Energy, 2020, 36 (6): 92- 98.
DOI |
|
7 |
张剑波, 卢兰光, 李哲. 车用动力电池系统的关键技术与学科前沿[J]. 汽车安全与节能学报, 2012, 3 (2): 87- 104.
DOI |
ZHANG J B , LU L G , LI Z . Key technologies and fundamental academic issues for traction battery systems[J]. Journal of Automotive Safety and Energy, 2012, 3 (2): 87- 104.
DOI |
|
8 | 沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69 (1): 309- 316. |
SHEN J N , HE Y J , MA Z F . Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69 (1): 309- 316. | |
9 | KIM T, WANG Y, SAHINOGLU Z, et al. State of charge estimation based on a realtime battery model and iterative smooth variable structure filter[C]//2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20-23 May, 2014: 132-137. |
10 | CHANG W Y . The state of charge estimating methods for battery: a review[J]. ISRN Applied Mathematics, 2015, 2013, 203- 209. |
11 | TANG X , LIU B , GAO F . State of charge estimation of LiFePO4 battery based on a gain-classifier observer[J]. Energy Procedia, 2017, 105 (5): 2071- 2076. |
12 | XIONG R , CAO J , YU Q , et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2017, 6, 1832- 1843. |
13 |
ATTANAYAKA A M , KARUNADASA J P , HEMAPALA K T . Estimation of state of charge for lithium-ion batteries: a review[J]. AIMS Energy, 2019, 7 (2): 186- 210.
DOI |
14 |
LEE S , KIM J , LEE J , et al. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge[J]. Journal of Power Sources, 2008, 185 (2): 1367- 1373.
DOI |
15 |
ZHU L , SUN Z , DAI H , et al. A novel modeling methodology of open circuit voltage hysteresis for LiFePO4 batteries based on an adaptive discrete Preisach model[J]. Applied Energy, 2015, 155, 91- 109.
DOI |
16 |
KIM I S . The novel state of charge estimation method for lithium battery using sliding mode observer[J]. Journal of Power Sources, 2006, 163 (1): 584- 590.
DOI |
17 |
CHEN X , SHEN W , CAO Z , et al. A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles[J]. Journal of Power Sources, 2014, 246, 667- 678.
DOI |
18 |
MASTALI M , VAZQUEZ-ARENAS J , FRASER R , et al. Battery state of the charge estimation using Kalman filtering[J]. Journal of Power Sources, 2013, 239, 294- 307.
DOI |
19 |
PLETT G L . Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3:State and parameter estimation[J]. Journal of Power Sources, 2004, 134 (2): 277- 292.
DOI |
20 |
PLETT G L . Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2:Simultaneous state and parameter estimation[J]. Journal of power sources, 2006, 161 (2): 1369- 1384.
DOI |
21 |
YU Q , XIONG R , LIN C , et al. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (10): 8693- 8701.
DOI |
22 | ZHANG Y , ZHANG C , ZHANG X . State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles[J]. IET Control Theory & Applications, 2014, 8 (3): 160- 167. |
23 |
XIONG R , YU Q , LIN C . A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter[J]. Applied Energy, 2017, 207, 346- 353.
DOI |
24 |
CHARKHGARD M , FARROKHI M . State-of-charge estimation for lithium-ion batteries using neural networks and EKF[J]. IEEE transactions on industrial electronics, 2010, 57 (12): 4178- 4187.
DOI |
25 |
HE H , XIONG R , ZHANG X , et al. State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model[J]. IEEE Transactions on vehicular technology, 2011, 60 (4): 1461- 1469.
DOI |
26 |
SUN F , HU X , ZOU Y , et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J]. Energy, 2011, 36 (5): 3531- 3540.
DOI |
27 | GAO M Y, LIU Y Y, HE Z W. Battery state of charge online estimation based on particle filter[C]//4th International Congress on Image and Signal Processing, Shanghai, 2011: 2233-2236. |
28 |
HE Y , LIU X , ZHANG C , et al. A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries[J]. Applied Energy, 2013, 101, 808- 814.
DOI |
29 |
HOW D N , HANNAN M A , LIPU M H , et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: a review[J]. IEEE Access, 2019, 7, 136116- 136136.
DOI |
30 | HE W , WILLIARD N , CHEN C , et al. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation[J]. International Journal of Electrical Power & Energy Systems, 2014, 62, 783- 791. |
31 | ISMAIL M, DLYMA R, ELRAKAYBI A, et al. Battery state of charge estimation using an Artificial Neural Network[C]//2017 IEEE Transportation Electrification Conference and Expo, Chicago, USA, 2017: 342-349. |
32 |
CHEMALI E , KOLLMEYER P J , PREINDL M , et al. State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach[J]. Journal of Power Sources, 2018, 400, 242- 255.
DOI |
33 |
HOW D N , HANNAN M A , LIPU M S , et al. State-of-charge estimation of Li-ion battery in electric vehicles: a deep neural network approach[J]. IEEE Transactions on Industry Applications, 2020, 56 (5): 5565- 5574.
DOI |
34 |
YANG F , LI W , LI C , et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175, 66- 75.
DOI |
35 | CHEMALI E , KOLLMEYER P J , PREINDL M , et al. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2017, 65 (8): 6730- 6739. |
36 | SAHINOGLU G O , PAJOVIC M , SAHINOGLU Z , et al. Battery state-of-charge estimation based on regular/recurrent Gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2017, 65 (5): 4311- 4321. |
37 | XIAO F , LI C , FAN Y , et al. State of charge estimation for lithium-ion battery based on Gaussian process regression with deep recurrent kernel[J]. International Journal of Electrical Power & Energy Systems, 2021, 124, 106369. |
38 |
SHRIVASTAVA P , SOON T K , IDRIS M Y , et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113, 109233.
DOI |
39 |
BIRKL C R , ROBERTS M R , MCTURK E , et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341, 373- 386.
DOI |
40 |
XIONG R , LI L , TIAN J . Towards a smarter battery management system: a critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405, 18- 29.
DOI |
41 |
OUYANG M , FENG X , HAN X , et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery[J]. Applied Energy, 2016, 165, 48- 59.
DOI |
42 |
SADABADI K K , RAMESH P , TULPULE P , et al. Design and calibration of a semi-empirical model for capturing dominant aging mechanisms of a PbA battery[J]. Journal of Energy Storage, 2019, 24, 100789.
DOI |
43 | ZHANG D , DEY S , PEREZ H E , et al. Real-time capacity estimation of lithium-ion batteries utilizing thermal dynamics[J]. IEEE Transactions on Control Systems Technology, 2019, 28 (3): 992- 1000. |
44 |
LIU K , ZOU C , LI K , et al. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5463- 5474.
DOI |
45 |
YU Q , XIONG R , YANG R , et al. Online capacity estimation for lithium-ion batteries through joint estimation method[J]. Applied Energy, 2019, 255, 113817.
DOI |
46 |
XIONG R , LI L , LI Z , et al. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application[J]. Applied Energy, 2018, 219, 264- 275.
DOI |
47 |
ZHENG Y , QIN C , LAI X , et al. A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model[J]. Applied Energy, 2019, 251, 113327.
DOI |
48 | ZHANG C, LI K, MCLOONE S, et al. Battery modelling methods for electric vehicles-A review[C]//2014 European Control Conference, Strasbourg, France, 2014: 2673-2678. |
49 |
LI S , PISCHINGER S , HE C , et al. A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test[J]. Applied Energy, 2018, 212, 1522- 1536.
DOI |
50 |
HU C , YOUN B D , CHUNG J . A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J]. Applied Energy, 2012, 92, 694- 704.
DOI |
51 | CHEN C , XIONG R , SHEN W . A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2017, 33 (1): 332- 342. |
52 |
YE M , GUO H , XIONG R , et al. An online model-based battery parameter and state estimation method using multi-scale dual adaptive particle filters[J]. Energy Procedia, 2017, 105, 4549- 4554.
DOI |
53 |
WENG C , CUI Y , SUN J , et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235, 36- 44.
DOI |
54 | 郭琦沛, 张彩萍, 高洋, 等. 基于容量增量曲线的三元锂离子电池健康状态估计方法[J]. 全球能源互联网, 2018, 1 (2): 82- 89. |
GUO Q P , ZHANG C P , GAO Y , et al. Incremental capacity curve based state of health estimation for LNMCO lithium-ion batteries[J]. Journal of Global Energy Interconnection, 2018, 1 (2): 82- 89. | |
55 |
LI Y , ABDEL-MONEM M , GOPALAKRISHNAN R , et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373, 40- 53.
DOI |
56 |
ZHENG L , ZHU J , LU DD , et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150, 759- 769.
DOI |
57 |
TANG X , ZOU C , YAO K , et al. A fast estimation algorithm for lithium-ion battery state of health[J]. Journal of Power Sources, 2018, 396, 453- 458.
DOI |
58 |
WU Y , KEIL P , SCHUSTER S F , et al. Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2 lithium-ion pouch cell[J]. Journal of The Electrochemical Society, 2017, 164 (7): 1438- 1445.
DOI |
59 | RICHARDSON R R , BIRKL C R , OSBORNE M A , et al. Gaussian process regression for in situ capacity estimation of lithium-ion batteries[J]. IEEE Transactions on Industrial Informatics, 2018, 15 (1): 127- 138. |
60 |
LI Y , SHENG H , CHENG Y , et al. State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis[J]. Applied Energy, 2020, 277, 115504.
DOI |
61 |
FENG X , WENG C , HE X , et al. Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (9): 8583- 8592.
DOI |
62 |
LI Y , ZOU C , BERECIBAR M , et al. Random forest regression for online capacity estimation of lithium-ion batteries[J]. Applied Energy, 2018, 232, 197- 210.
DOI |
63 | LIU K , LI Y , HU X , et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (6): 3767- 3777. |
64 | LI X , YUAN C , LI X , et al. State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190, 116467. |
65 | GUO P , CHENG Z , YANG L . A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412, 442- 450. |
66 | LI X , WANG Z , ZHANG L . Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles[J]. Energy, 2019, 174, 33- 44. |
67 | YOU G W , PARK S , OH D . Diagnosis of electric vehicle batteries using recurrent neural networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (6): 4885- 4893. |
68 | SHEN S , SADOUGHI M , CHEN X , et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25, 100817. |
69 | KAUR K , GARG A , CUI X , et al. Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2021, 45 (2): 3113- 3128. |
70 | TAN Y , ZHAO G . Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2019, 67 (10): 8723- 8731. |
71 | LI Y , LI K , LIU X , et al. Lithium-ion battery capacity estimation: a pruned convolutional neural network approach assisted with transfer learning[J]. Applied Energy, 2021, 285, 116410. |
[1] | 周丹, 袁至, 李骥, 范玮. 考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J]. 发电技术, 2024, 45(3): 412-422. |
[2] | 赵斌, 梁告, 姜孟浩, 邹港, 王力. 光储系统并网功率波动平抑及储能优化配置[J]. 发电技术, 2024, 45(3): 423-433. |
[3] | 李军徽, 陈国航, 马腾, 李翠萍, 朱星旭, 贾晨. 高风电渗透率下液流电池储能系统调峰优化控制策略[J]. 发电技术, 2024, 45(3): 434-447. |
[4] | 韩秀秀, 魏少鑫, 汪剑, 崔超婕, 骞伟中. 高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析[J]. 发电技术, 2024, 45(3): 494-507. |
[5] | 刘洪波, 刘永发, 任阳, 孙黎, 刘珅诚. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, 45(2): 260-272. |
[6] | 陈志华, 尤梦凯, 蔡伟, 胡经伟, 胡兴, 张爱芳, 张科杰, 王伟. 考虑全寿命周期的储能电站综合评价模型[J]. 发电技术, 2023, 44(6): 883-888. |
[7] | 石梦舒, 许小峰, 张继广, 李忆, 周保中, 乐鹰, 毕圣. 考虑电-氢市场的虚拟电厂两阶段优化策略研究[J]. 发电技术, 2023, 44(5): 645-655. |
[8] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[9] | 郭学伯, 范良迟, 许浈婧, 李有, 林俊, 陈林. 助力节能降碳的相变储热材料研究和应用进展[J]. 发电技术, 2023, 44(2): 201-212. |
[10] | 叶珍珍, 陈鑫祺, 张抒婷, 汪剑, 崔超婕, 张刚, 张磊, 钱陆明, 金鹰, 骞伟中. 离子液体型双电层电容器在45 ℃和3 V状态下的长周期运行研究[J]. 发电技术, 2023, 44(2): 213-220. |
[11] | 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17. |
[12] | 郝艺博, 杜锡力, 李笑竹, 陈来军. 考虑储能性能差异的新能源场站群共享储能交易模式[J]. 发电技术, 2022, 43(5): 687-697. |
[13] | 谷晴, 李睿, 蔡旭, 谢宝昌. 面向百兆瓦级应用的电池储能系统拓扑与控制方法[J]. 发电技术, 2022, 43(5): 698-706. |
[14] | 霍龙, 张誉宝, 陈欣. 人工智能在分布式储能技术中的应用[J]. 发电技术, 2022, 43(5): 707-717. |
[15] | 陈晓光, 杨秀媛, 王镇林, 王浩扬. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||