发电技术 ›› 2022, Vol. 43 ›› Issue (5): 707-717.DOI: 10.12096/j.2096-4528.pgt.22109
霍龙1,2, 张誉宝1,2, 陈欣1,2
收稿日期:
2022-06-24
出版日期:
2022-10-31
发布日期:
2022-11-04
作者简介:
基金资助:
Long HUO1,2, Yubao ZHANG1,2, Xin CHEN1,2
Received:
2022-06-24
Published:
2022-10-31
Online:
2022-11-04
Supported by:
摘要:
分布式储能是智能配电网和微电网中的关键组成部分。作为目前最具颠覆性的科学技术之一,人工智能有望改变传统分布式储能建模、分析和控制方式,营造更智能化的应用前景。针对人工智能在分布式储能技术中的应用问题,简要回顾了人工智能在电力系统的发展历程,分析了其在分布式储能中的应用适配性问题,归纳总结微电网、智能楼宇和车网协同3种不同空间尺度场景下,人工智能在分布式储能中的具体应用方向和研究成果,并对未来发展趋势进行了展望,以期为分布式储能的智能化研究和发展提供有益参考。
中图分类号:
霍龙, 张誉宝, 陈欣. 人工智能在分布式储能技术中的应用[J]. 发电技术, 2022, 43(5): 707-717.
Long HUO, Yubao ZHANG, Xin CHEN. Artificial Intelligence Applications in Distributed Energy Storage Technologies[J]. Power Generation Technology, 2022, 43(5): 707-717.
1 | 申洪,周勤勇,刘耀,等 .碳中和背景下全球能源互联网构建的关键技术及展望[J].发电技术,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 |
SHEN H, ZHOU Q Y, LIU Y,et al .Key technologies and prospects for the construction of global energy internet under the background of carbon neutral [J].Power Generation Technology,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 | |
2 | 闫群民,穆佳豪,马永翔,等 .分布式储能应用模式及优化配置综述[J].电力工程技术,2022,41(2):67-74. doi:10.12158/j.2096-3203.2022.02.009 |
YAN Q M, MU J B, MA Y X,et al .Review of distributed energy storage application mode and optimal configuration[J].Electric Power Engineering Technology,2022,41(2):67-74. doi:10.12158/j.2096-3203.2022.02.009 | |
3 | 黄蕾,孙新跃,万新云 .全国最大规模用户侧分布式储能项目落户镇江[N].国家电网报,2018-05-15(3). |
HUANG L, SUN X Y, WANG X Y .Nation’s largest user side distributed energy storage project settled in Zhenjiang[N].State Grid News,2018-05-15(3). | |
4 | 李亦言,胡荣兴,宋立冬,等 .机器学习在智能配用电领域中的应用:北美工程实践概述[J].电力系统自动化,2021,45(16):99-113. doi:10.7500/AEPS20210320001 |
LI Y Y, HU R X, SONG L D,et al .Application of machine learning in field of smart power distribution and utilization:overview of engineering practice in North America[J].Automation of Electric Power Systems,2021,45(16):99-113. doi:10.7500/AEPS20210320001 | |
5 | 李人茜 .洛克希德·马丁公司投资加拿大萨德尔布鲁克太阳能+储能项目[J].上海节能,2022(3):355. |
LI R Q .Lockheed Martin invests in Canada’s Saddlebrook solar+energy project[J].Shanghai Energy Conservation,2022(3):355. | |
6 | 刘国静,李冰洁,胡晓燕,等 .澳大利亚储能相关政策与电力市场机制及对我国的启示[J/OL].储能科学与技术:1-13[2022-05-17].DOI:10.19799/j.cnki. 2095-4239.2021.0605. |
LIU G J, LI B J, HU X Y,et al .Australia policy mechanisms and business models for energy storage and their applications to China[J/OL].Energy Storage Science and Technology:1-13[2022-05-17].DOI:1 0.19799/j.cnki. 2095-4239.2021.0605. | |
7 | 陈超逸, GEROG A, DIEK U S .德国家用光伏系统储能预测及运行策略[J].住宅科技,2020,40(6):73-77. doi:10.3969/j.issn.1002-0454.2020.06.018 |
CHEN C Y, GEROG A, DIEK U S .Energy storage prediction and operation strategies of photovoltaic system in German detached house[J].Housing Science,2020,40(6):73-77. doi:10.3969/j.issn.1002-0454.2020.06.018 | |
8 | BALDWIN S, BINDEWALD G, BROWN A,et al .Quadrennial technology review:an assessment of energy technologies and research opportunities[R].Washington,DC:United States Department of Energy,2015. |
9 | 李相俊,许格健 .基于长短期记忆神经网络的风力发电功率预测方法[J].发电技术,2019,40(5):426-433. doi:10.12096/j.2096-4528.pgt.19108 |
LI X J, XU G J .Wind power prediction method based on long short-term memory neural network[J].Power Generation Technology,2019,40(5):426-433. doi:10.12096/j.2096-4528.pgt.19108 | |
10 | LI X J, XU G J .Wind power prediction method based on long short-term memory neural network[J].Power Generation Technology,2019,40(5):426-433. |
11 | 汤奕,崔晗,李峰,等 .人工智能在电力系统暂态问题中的应用综述[J].中国电机工程学报,2019,39(1):2-13. |
TANG Y, CUI H, LI F,et al .Review on artificial intelligence in power system transient stability analysis[J].Proceedings of the CSEE,2019,39(1):2-13. | |
12 | 陈尚年,李录平,张世海,等 .汽轮发电机组振动故障诊断技术研究进展[J].发电技术,2021,42(4):489-499. doi:10.12096/j.2096-4528.pgt.21048 |
CHEN S N, LI L P, ZHANG S H,et al .Research progress of vibration fault diagnosis technology for steam turbine generator sets[J].Power Generation Technology,2021,42(4):489-499. doi:10.12096/j.2096-4528.pgt.21048 | |
13 | LI M, WEI W, CHEN Y,et al. Learning the optimal strategy of power system operation with varying renewable generations[J].IEEE Transactions on Sustainable Energy,2021, 12(4):2293-2305. doi:10.1109/tste.2021.3088951 |
14 | 梁宏,李鸿鑫,张华赢,等 .基于深度强化学习的微网储能系统控制策略研究[J].电网技术,2021,45(10):3869-3877. |
LIANG H, LI H X, ZHANG H Y,et al .Control strategy of microgrid energy storage system based on deep reinforcement learning[J].Power System Technology,2021,45(10):3869-3877. | |
15 | 刘真,彭立虹 .电气操作票的自动开出和校核系统:人工智能在电力系统中的应用[J].华北电力学院学报,1985(2):64-71. |
LIU Z, PENG L H .Automatic opening and checking system of electrical operation ticket:application of artificial intelligence in power system[J].Journal of North China Electric Power University,1985(2):64-71. | |
16 | 韩祯祥,文福拴 .人工智能及其在电力系统中的应用:从专家系统到人工神经元网络[J].电力系统自动化,1991,15(3):5-15. |
HAN Z X, WEN F S .Artificial intelligence and its applications to power systems:from expert systems to artificial neural networks[J].Automation of Electric Power Systems,1991,15(3):5-15. | |
17 | 朱永利,石鑫,王刘旺 .人工智能在电力系统中应用的近期研究热点介绍[J].发电技术,2018,39(3):204-212. doi:10.12096/j.2096-4528.pgt.2018.031 |
ZHU Y L, SHI X, WANG L W .Recent research hotspot introduction on the application of artificial intelligence in power system[J].Power Generation Technology,2018,39(3):204-212. doi:10.12096/j.2096-4528.pgt.2018.031 | |
18 | 周孝信,陈树勇,鲁宗相,等 .能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904. |
ZHOU X X, CHEN S Y, LU Z X,et al .Technology features of the new generation power system in China[J].Proceedings of the CSEE,2018,38(7):1893-1904. | |
19 | 王博石,余娟,杨燕,等 .基于重构误差计算的数据驱动储能电池热失控预警方法[J/OL].中国电机工程学报:1-12[2022-05-05].DOI:10.13334/j.0258-8013. pcsee. 213153. |
WANG B S, YU J, YANG Y,et al .A data-driven thermal runaway early warning method for energy storage battery with reconstruction error calculation[J/OL].Proceedings of the CSEE:1-12[2022-05-05].DOI:10.13334/j. 0258-8013. pcsee.213153. | |
20 | 王锡凡,邵成成,王秀丽,等 .电动汽车充电负荷与调度控制策略综述[J].中国电机工程学报,2013,33(1):1-10. |
WANG X F, SHAO C C, WANG X L,et al .Survey of electric vehicle charging load and dispatch control strategies[J].Proceedings of the CSEE,2013,33(1):1-10. | |
21 | LE F C, BELLETTI F, MOURA S .Optimal charging of electric vehicles for load shaping:a dual-splitting framework with explicit convergence bounds[J].IEEE Transactions on Transportation Electrification,2016,2(2):190-199. doi:10.1109/tte.2016.2531025 |
22 | SCHULLER A, FLATH C M, GOTTWALT S .Quantifying load flexibility of electric vehicles for renewable energy integration[J].Applied Energy,2015,151:335-344. doi:10.1016/j.apenergy.2015.04.004 |
23 | 潘振宁,余涛,王克英 .考虑多方主体利益的大规模电动汽车分布式实时协同优化[J].中国电机工程学报,2019,39(12):3528-3541. |
PAN Z N, YU T, WANG K Y,et al .Decentralized coordinated dispatch for real-time optimization of massive electric vehicles considering various interests[J].Proceedings of the CSEE,2019,39(12):3528-3541. | |
24 | 胡澄,刘瑜俊,徐青山,等 .面向含风电楼宇的电动汽车优化调度策略[J].电网技术,2020,44(2):564-572. doi:10.13335/j.1000-3673.pst.2019.0876 |
HU C, LIU Y J, XU Q S,et al .Optimal scheduling strategy for electric vehicles in buildings with wind power[J].Power System Technology,2020,44(2):564-572. doi:10.13335/j.1000-3673.pst.2019.0876 | |
25 | 王彬,郭文鑫,李世明,等 .基于短期预测信息和长期值函数近似的大规模电动汽车实时随机优化调度算法[J].电力系统保护与控制,2019,47(24):47-56. |
WANG B, GUO W X, LI S M,et al . Real-time charging optimization for large-scale electric vehicles based on short term forecast information and long-term value function approximation[J].Power System Protection and Control,2019,47(24):47-56. | |
26 | 胡俊杰,周华嫣然,李阳 .集群电动汽车平抑光伏波动实时调度策略[J].电网技术,2019,43(7):2552-2560. |
HU J J, ZHOU H Y R, LI Y . Real-time dispatching strategy for aggregated electric vehicles to smooth power fluctuation of photovoltaics[J].Power System Technology,2019,43(7):2552-2560. | |
27 | YAO L, LIM W H, TSAI T S .A real-time charging scheme for demand response in electric vehicle parking station[J].IEEE Transactions on Smart Grid,2016,8(1):52-62. doi:10.1109/tsg.2016.2582749 |
28 | BINETTI G, DAVOUDI A, NASO D,et al .Scalable real-Ttime electric vehicles charging with discrete charging rates[J].IEEE Transactions on Smart Grid,2015,6(5):2211-2220. doi:10.1109/tsg.2015.2396772 |
29 | LIAO Y T, LU C N . Dispatch of EV charging station energy resources for sustainable mobility[J].IEEE Transactions on Transportation Electrification,2015,1(1):86-93. doi:10.1109/tte.2015.2430287 |
30 | HUANG Q L, JIA Q S, QIU Z F,et al .Matching EV charging load with uncertain wind:a simulation-based policy improvement approach[J].IEEE Transactions on Smart Grid,2015,6(3):1425-33. doi:10.1109/tsg.2014.2385711 |
31 | WEN Z, NEILL D, MAEI H .Optimal demand response using device-based reinforcement learning[J].IEEE Transactions on Smart Grid,2015,6(5):2312-2324. doi:10.1109/tsg.2015.2396993 |
32 | 朱轶伦,陈新建,高强,等 .一种基于深度强化学习的电网潮流特征提取方法[J].电网与清洁能源,2020,36(3):7-12. doi:10.3969/j.issn.1674-3814.2020.03.002 |
ZHU Y L, CHEN X J, GAO Q,et al .A power flow feature extraction method based on deep reinforcement learning[J].Power System and Clean Energy,2020,36(3):7-12. doi:10.3969/j.issn.1674-3814.2020.03.002 | |
33 | CHIS A, LUNDEN J, KOIVUNEN V .Reinforcement learning-based plug-in electric vehicle charging with forecasted price[J].IEEE Transactions on Vehicular Technology,2017,66(5):3674-3684. |
34 | RUELENS F, CLASSENS B J, VANDAEL S,et al . Residential demand response of thermostatically controlled loads using batch reinforcement learning[J].IEEE Transactions on Smart Grid,2017,8(5):2149-2159. doi:10.1109/tsg.2016.2517211 |
35 | CYBENKO G .Approximation by superpositions of a sigmoidal function[J].Mathematics of Control,Signals and Systems,1989,2(4):303-314. doi:10.1007/bf02551274 |
36 | 孙立钧,顾雪平,刘彤,等 .一种基于深度强化学习算法的电网有功安全校正方法[J].电力系统保护与控制,2022,50(10):114-122. |
SUN L J, GU X P, LIU T,et al .A deep reinforcement learning algorithm-based active safety correction method for power grids[J].Power System Protection and Control,2022,50(10):114-122. | |
37 | 黄景林,彭显刚,简胜超,等 .基于深度学习与不平衡样本集的输电线路故障分类[J].智慧电力,2021,49(2):114-119. doi:10.3969/j.issn.1673-7598.2021.02.018 |
HUANG J L, PENG X G, JIAN S C,et al .Transmission line fault classification based on deep learning and imbalanced sample set[J].Smart Power,2021,49(2):114-119. doi:10.3969/j.issn.1673-7598.2021.02.018 | |
38 | MNIH V, KAVUKCUOGLU K, SILVER D,et al .Human-level control through deep reinforcement learning[J].Nature,2015,518(7540):529-533. doi:10.1038/nature14236 |
39 | 范士雄,李立新,王松岩,等 .人工智能技术在电网调控中的应用研究[J].电网技术,2020,44(2):401-411. |
FAN S X, LI L X, WANG S Y,et al .Application analysis and exploration of artificial intelligence technology in power grid dispatch and control[J].Power System Technology,2020,44(2):401-411. | |
40 | ZHANG Z D, ZHANG D X, QIU R C .Deep reinforcement learning for power system applications:an overview[J].CSEE Journal of Power and Energy Systems,2019,6(1):213-225. |
41 | 杜明秋,李妍,王标,等 .电动汽车充电控制的深度增强学习优化方法[J].中国电机工程学报,2019,39(14):4042-4049. |
DU M Q, LI Y, WANG B,et al .Deep reinforcement learning optimization method for charging control of electric vehicles[J].Proceedings of the CSEE,2019,39(14):4042-4049. | |
42 | WAN Z, LI H, HE H,et al . Model-free real-time EV charging scheduling based on deep reinforcement learning[J].IEEE Transactions on Smart Grid,2019,10(5):5246-5257. doi:10.1109/tsg.2018.2879572 |
43 | 李航,李国杰,汪可友 .基于深度强化学习的电动汽车实时调度策略[J].电力系统自动化,2020,44(22):161-167. doi:10.7500/AEPS20200331009 |
LI H, LI G J, WANG K Y .Real-time dispatch strategy for electric vehicles based on deep reinforcement learning[J].Automation of Electric Power Systems,2020,44(22):161-167. doi:10.7500/AEPS20200331009 | |
44 | SILVA F L D, NISHIDA C E H, ROIJERS D M,et al .Coordination of electric vehicle charging through multiagent reinforcement learning[J].IEEE Transactions on Smart Grid,2020,11(3):2347-2356. doi:10.1109/tsg.2019.2952331 |
45 | 徐熙林,宋依群,姚良忠,等 .基于多层电价响应机制的主动配电网源-网-荷协调方法[J].电力系统自动化,2018,42(05):9-17. |
XU X L, SONG Y Q, YAO L Z,et al .Source-grid-load coordination method for active distribution network based on multi-level electricity price response mechanism[J].Automation of Electric Power Systems,2018,42(50):9-17. | |
46 | 张自东,邱才明,张东霞,等 .基于深度强化学习的微电网复合储能协调控制方法[J].电网技术,2019,43(6):1914-1921. |
ZHANG Z D, QIU C M, ZHANG D X,et al .A coordinated control method for hybrid energy storage system in microgrid based on deep reinforcement learning[J].Proceedings of the CSEE,2019,43(6):1914-1921. | |
47 | MAHMOUD T S, AHMED B S, HASSAN M Y .The role of intelligent generation control algorithms in optimizing battery energy storage systems size in microgrids:a case study from Western Australia[J].Energy Conversion and Management,2019,196:1335-1352. doi:10.1016/j.enconman.2019.06.045 |
48 | RAJAMAND S, SHAFIE-KHAH M, CATALAO J P S .Energy storage systems implementation and photovoltaic output prediction for cost minimization of a Microgrid[J].Electric Power Systems Research,2022,202:107596. doi:10.1016/j.epsr.2021.107596 |
49 | CHEN S, LI J, JIANG C,et al .Optimal energy-storage configuration for microgrids based on SOH estimation and deep Q-network[J].Entropy,2022,24(5):630-640. doi:10.3390/e24050630 |
50 | GARCIA VERA Y E, DUFO-LOPEZ R, BERNAL-AGUSTIN J L .Energy management in microgrids with renewable energy sources:a literature review[J].Applied Sciences,2019,9(18):3854-3590. doi:10.3390/app9183854 |
51 | 王亚东,崔承刚,钱申晟,等 .基于深度强化学习的微电网储能调度策略研究[J].可再生能源,2019,7(8):1220-1228. doi:10.3969/j.issn.1671-5292.2019.08.018 |
WANG Y D, CUI C G, QIAN S S,et al .Study on micro-grid energy storage dispatching strategy based on deep Q-value reinforcement learning[J].Renewable Energy Resources,2019,7(8):1220-1228. doi:10.3969/j.issn.1671-5292.2019.08.018 | |
52 | QIU X, NGUYEN T A, CROW M L .Heterogeneous energy storage optimization for microgrids[J].IEEE Transactions on Smart Grid,2015,7(3):1453-1461. doi:10.1109/tsg.2015.2461134 |
53 | SHANG Y, WU W, GUO J,et al .Stochastic dispatch of energy storage in microgrids:an augmented reinforcement learning approach[J].Applied Energy,2020,261:114423. doi:10.1016/j.apenergy.2019.114423 |
54 | BUI V H, HUSSAIN A, KIM H M .Q-learning-based operation strategy for community battery energy storage system (CBESS) in microgrid system[J].Energies,2019,12(9):1789-1798. doi:10.3390/en12091789 |
55 | VAN HASSELT H, GUEZ A, SILVER D .Deep reinforcement learning with double Q-learning[J].Intelligent Control and Automation,2016,30(1):129-144. doi:10.1609/aaai.v30i1.10295 |
56 | BUI V H, HUSSAIN A, KIM H M .Double deep Q-learning-based distributed operation of battery energy storage system considering uncertainties[J].IEEE Transactions on Smart Grid,2019,11(1):457-469. doi:10.1109/tsg.2019.2924025 |
57 | 陈亭轩,徐潇源,严正,等 .基于深度强化学习的光储充电站储能系统优化运行[J].电力自动化设备,2021,41(10):90-98. |
CHEN T X, XU X Y, YAN Z,et al .Optimal operation based on deep reinforcement learning for energy storage system in photovoltaic-storage charging station[J].Electric Power Automation Equipment,2021,41(10):90-98. | |
58 | YAO S, GU J, ZHANG H,et al .Resilient load restoration in microgrids considering mobile energy storage fleets:a deep reinforcement learning approach[C]//2020 IEEE Power & Energy Society General Meeting (PESGM).IEEE,2020:1-5. doi:10.1109/pesgm41954.2020.9282132 |
59 | 邢云 .基于模糊控制的微电网储能系统功率控制策略研究[D].镇江:江苏大学,2021. |
XING Y .Research on power control strategy of microgrid energy storage system based on fuzzy control[D].Zhenjiang:Jiangsu University,2021. | |
60 | 杨娇 .基于电池储能的微电网电能质量评估与控制研究[D].沈阳:东北大学,2019. |
YANG J .Research on power quality assessment and control in microgrid based on battery energy storage[D].Shenyang:Northeastern University,2019. | |
61 | UDDIN M, ROMLIE M F, ABDULLAH M F,et al .A novel peak shaving algorithm for islanded microgrid using battery energy storage system[J].Energy,2020,196:117084. doi:10.1016/j.energy.2020.117084 |
62 | YOO C H, CHUNG I Y, LEE H J,et al .Intelligent control of battery energy storage for multi-agent based microgrid energy management[J].Energies,2013,6(10):4956-4979. doi:10.3390/en6104956 |
63 | KOLLURI R R, DE HOOG J .Adaptive control using machine learning for distributed storage in microgrids[C]//Proceedings of the Eleventh ACM International Conference on Future Energy Systems.ACM,2020:509-515. doi:10.1145/3396851.3402122 |
64 | MISHRA S P, KRISHNA R V, DASH P K,et al .Multi-objective auto-encoder deep learning-based stack switching scheme for improved battery life using error prediction of wind-battery storage microgrid[J].International Journal of Energy Research,2021,45(14):20331-20355. |
65 | 蔡钦钦,杨晓华,朱永强 .楼宇能量管理系统的光伏消纳与储能调度研究[J].电力建设,2020,41(1):23-31. |
CAI Q Q, YANG X H, ZHU Y Q .Research on photovoltaic accommodation and energy storage scheduling of building energy management system[J]. Electric Power Construction,2020,41(1):23-31. | |
66 | 丁曦,姜威,郭创新,等 .考虑需求响应的电/热/气云储能优化配置策略[J].电力建设,2022,43(3):83-99. |
DING X, JIANG W, GUO C X,et al .Optimal configuration of electricity-heat-gas cloud energy storage considering demand response[J].Electric Power Construction,2022,43(3):83-99. | |
67 | 刘文轩,宋璇坤,韩柳,等 .计及需求响应的用户侧光伏微电网储能配置方法[J].电气自动化,2020,42(5):22-24. doi:10.3969/j.issn.1000-3886.2020.05.007 |
LIU W X, SONG X K, HAN L,et al .Energy storage configuration method for user-side photovoltaic micro-grid considering demand response[J].Electric Automation,2020,42(5):22-24. doi:10.3969/j.issn.1000-3886.2020.05.007 | |
68 | 张甜,赵奇,陈中,等 .基于深度强化学习的家庭能量管理分层优化策略[J].电力系统自动化,2021,45(21):149-158. doi:10.7500/AEPS20210331010 |
ZHANG T, ZHAO Q, CHEN Z,et al .Hierarchical optimization strategy for home energy management based on deep reinforcement learning[J].Automation of Electric Power Systems,2021,45(21):149-158. doi:10.7500/AEPS20210331010 | |
69 | 冯斌,郭亦宗,陈页,等 .基于GRU多步预测技术的云储能充放电策略[J].电力系统自动化,2021,45(9):46-54. doi:10.7500/AEPS20200330015 |
FENG B, GUO Y Z, CHEN Y,et al .Charging and discharging strategy of cloud energy storage based on GRU multi-step prediction technology[J].Automation of Electric Power Systems,2021,45(9):46-54. doi:10.7500/AEPS20200330015 | |
70 | VIJAYALAKSHMI K, VIJAYAKUMAR K, NANDHAKUMAR K .Prediction of virtual energy storage capacity of the air-conditioner using a stochastic gradient descent based artificial neural network[J].Electric Power Systems Research,2022,208:107879. doi:10.1016/j.epsr.2022.107879 |
71 | XU X, XU Y, WANG M H,et al .Data-driven game-based pricing for sharing rooftop photovoltaic generation and energy storage in the residential building cluster under uncertainties[J].IEEE Transactions on Industrial Informatics,2020,17(7):4480-4491. doi:10.1109/tii.2020.3016336 |
72 | 兰国龙,陈佳桥,叶恒志,等 .基于差分进化粒子群神经网络的用户侧储能容量优化配置[J].电气自动化,2021,43(2):53-56. doi:10.3969/j.issn.1000-3886.2021.02.019 |
LAN G L, CHEN J Q, YE H Z,et al .Optimal configuration of user-side energy storage capacity based on differential evolution-particle swarm optimization neural network[J].Power System & Automation,2021,43(2):53-56. doi:10.3969/j.issn.1000-3886.2021.02.019 | |
73 | 蒋伟,陈照光,颜浩 .基于改进人工蜂群算法的家庭储能容量优化配置[J/OL].电测与仪表:1-7 [2022-05-17].. |
JIANG W, CHEN Z G, YAN H .Optimal allocation of household energy storage capacity based on improved artificial bee colony algorithm[J].Electrical Measurement & Instrumentation: 1-7 [2022-05-17].. | |
74 | 胡厚鹏,林晓明,钱斌,等 .智慧家庭储能系统配置与运行双层优化[J].电力大数据,2020,23(11):55-62. |
HU H P, LIN X M, QIAN B,et al .Bi-level optimization of configuration and operation for smart home energy storage system[J].Power Systems and Big Data,2020,23(11):55-62. | |
75 | 王帅,尹忠东,田硕文,等 .基于退役动力电池的家庭储能容量优化配置[J].电测与仪表,2020,57(9):58-64. |
WANG S, YIN Z D, TIAN S W,et al .Capacity allocation of household energy storage system based on second-use of retired power battery[J].Electrical Measurement & Instrumentation,2020,57(9):58-64. | |
76 | ANAGNOSTIS A, MOUSTAKIDIS S, PAPAGEORGIOU E,et al .A hybrid bimodal LSTM architecture for cascading thermal energy storage modelling[J].Energies,2022,15(6):1959-1964. doi:10.3390/en15061959 |
77 | NASERABAD S N, RAFEE R, SAEDODIN S,et al .A novel approach of tri-objective optimization for a building energy system with thermal energy storage to determine the optimum size of energy suppliers[J]. Sustainable Energy Technologies and Assessments,2021,47:101379. doi:10.1016/j.seta.2021.101379 |
78 | YU Z J, HUANG G, HAGHIGHAT F,et al .Control strategies for integration of thermal energy storage into buildings:state-of-the-art review[J].Energy and Buildings,2015,106:203-215. doi:10.1016/j.enbuild.2015.05.038 |
[1] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[2] | 王翔宇, 陈武晖, 郭小龙, 常喜强. 发电系统数字化研究综述[J]. 发电技术, 2024, 45(1): 120-141. |
[3] | 黄超, 卜思齐, 陈麒宇, 李晓虹. 元电力:新一代智能电网[J]. 发电技术, 2022, 43(2): 287-304. |
[4] | 陈尚年, 李录平, 张世海, 欧阳敏南, 樊昂, 文贤馗. 汽轮发电机组振动故障诊断技术研究进展[J]. 发电技术, 2021, 42(4): 489-499. |
[5] | 卢昕, 陈众励, 李辉. 基于自抗扰控制的直流微电网双向Buck-Boost变换器控制策略研究[J]. 发电技术, 2021, 42(2): 193-200. |
[6] | 陆永耕, 李建刚, 黄禹铭, 李柏玉. 高渗透率分布式电源控制方法[J]. 发电技术, 2021, 42(1): 103-114. |
[7] | 赵海川, 芦彦东, 郑浩康, 邢作霞. 低压微网中小型直驱永磁风电机组低电压穿越技术研究[J]. 发电技术, 2020, 41(6): 659-666. |
[8] | 郭亦宗, 郭创新. 基于虚拟同步发电机的微电网并离网安全控制策略[J]. 发电技术, 2020, 41(6): 650-658. |
[9] | 钱梦然,李辉,刘新秀. 基于自抗扰控制的微电网三相不平衡问题研究[J]. 发电技术, 2020, 41(2): 160-166. |
[10] | 丁腾波,刘宏波,吴聘. 智慧能源体系信息通信技术构架及实施方案[J]. 发电技术, 2020, 41(2): 150-159. |
[11] | 孙黎霞,鞠平,白景涛,刘甜甜. 计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J]. 发电技术, 2020, 41(1): 64-72. |
[12] | 朱辉,吕红芳,阳晓明. 基于多代理系统的微电网多目标优化调度[J]. 发电技术, 2019, 40(6): 527-534. |
[13] | 方伟,曾博,徐富强,张建华. 极端灾害下基于智能楼宇分布式电源的配电系统负荷恢复力评估分析[J]. 发电技术, 2019, 40(5): 440-447. |
[14] | 刘忠强,刘忠富. 基于本地检测法的微电网孤岛检测方法研究[J]. 发电技术, 2019, 40(2): 122-127. |
[15] | 丁婧,王欣,郑淑文,陈宇,孙仕奇. DG接入对微电网电流保护的影响[J]. 发电技术, 2019, 40(1): 22-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||