Power Generation Technology ›› 2024, Vol. 45 ›› Issue (3): 401-411.DOI: 10.12096/j.2096-4528.pgt.22134
• Flexible Power Generation Technology • Previous Articles Next Articles
Huasong DAI1, Shaoxu PU1, Guoxu CHAI2, Li JIN2, Weiping CHEN1, Mingliang XIE1
Received:
2023-07-23
Revised:
2023-09-29
Published:
2024-06-30
Online:
2024-07-01
Supported by:
CLC Number:
Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit[J]. Power Generation Technology, 2024, 45(3): 401-411.
序号 | 参数 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
1 | 有功功率/MW | 142.1 | 101.4 |
2 | 主汽压力/MPa | 11.427 | 10.872 |
3 | 主汽温度/℃ | 567.3 | 556.2 |
4 | 再热压力/MPa | 1.891 | 1.362 |
5 | 再热温度/℃ | 559.9 | 540.3 |
6 | 低排压力/kPa | 4.541 | 3.835 |
7 | 排烟氧量/% | 4.7 | 5.0 |
8 | 排烟温度/℃ | 115.0 | 112.6 |
9 | 给水压力/MPa | 12.37 | 12.36 |
Tab. 1 Main operating parameters of the unit
序号 | 参数 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
1 | 有功功率/MW | 142.1 | 101.4 |
2 | 主汽压力/MPa | 11.427 | 10.872 |
3 | 主汽温度/℃ | 567.3 | 556.2 |
4 | 再热压力/MPa | 1.891 | 1.362 |
5 | 再热温度/℃ | 559.9 | 540.3 |
6 | 低排压力/kPa | 4.541 | 3.835 |
7 | 排烟氧量/% | 4.7 | 5.0 |
8 | 排烟温度/℃ | 115.0 | 112.6 |
9 | 给水压力/MPa | 12.37 | 12.36 |
参数 | 4.5% | 5.0% | 5.5% |
---|---|---|---|
一次风总量/(m3/h) | 282 000 | 271 000 | 274 000 |
二次风总量/(m3/h) | 92 000 | 116 000 | 150 000 |
平均床温/℃ | 850 | 853 | 833 |
A排烟温度/℃ | 118.0 | 113.9 | 119.4 |
B排烟温度/℃ | 120.6 | 111.3 | 117.0 |
A飞灰含碳质量分数/% | 1.31 | 1.06 | 1.14 |
B飞灰含碳质量分数/% | 0.70 | 0.54 | 0.70 |
炉渣含碳质量分数/% | 0.86 | 0.58 | 0.47 |
Tab. 2 Boiler oxygen optimization adjustment
参数 | 4.5% | 5.0% | 5.5% |
---|---|---|---|
一次风总量/(m3/h) | 282 000 | 271 000 | 274 000 |
二次风总量/(m3/h) | 92 000 | 116 000 | 150 000 |
平均床温/℃ | 850 | 853 | 833 |
A排烟温度/℃ | 118.0 | 113.9 | 119.4 |
B排烟温度/℃ | 120.6 | 111.3 | 117.0 |
A飞灰含碳质量分数/% | 1.31 | 1.06 | 1.14 |
B飞灰含碳质量分数/% | 0.70 | 0.54 | 0.70 |
炉渣含碳质量分数/% | 0.86 | 0.58 | 0.47 |
参数 | 床压工况 | |
---|---|---|
8.5 kPa | 7.0 kPa | |
A一次风机电流/A | 77.6 | 75.4 |
B一次风机电流/A | 78.9 | 77.1 |
平均床温/℃ | 835 | 852 |
最高床温/℃ | 908 | 918 |
最低床温/℃ | 766 | 792 |
A排烟温度/℃ | 123.7 | 125.2 |
B排烟温度/℃ | 127.5 | 131.2 |
飞灰含碳质量分数/% | 0.60 | 1.32 |
炉渣含碳质量分数/% | 0.39 | 0.32 |
Tab. 3 Boiler bed pressure optimization adjustment
参数 | 床压工况 | |
---|---|---|
8.5 kPa | 7.0 kPa | |
A一次风机电流/A | 77.6 | 75.4 |
B一次风机电流/A | 78.9 | 77.1 |
平均床温/℃ | 835 | 852 |
最高床温/℃ | 908 | 918 |
最低床温/℃ | 766 | 792 |
A排烟温度/℃ | 123.7 | 125.2 |
B排烟温度/℃ | 127.5 | 131.2 |
飞灰含碳质量分数/% | 0.60 | 1.32 |
炉渣含碳质量分数/% | 0.39 | 0.32 |
序号 | 参数 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
1 | 锅炉给水量/(t/h) | 429.44 | 320.24 |
2 | A泵转速/(r/min) | 3 312 | 3 231 |
3 | A泵流量/(t/h) | 340~358 | 340~358 |
4 | A泵再循环开度/% | 100 | 100 |
5 | A泵抽汽量/(t/h) | 14.1 | 14.1 |
6 | A泵振动位移/µm | 7.05~40.69 | 7.35~39.47 |
7 | A泵回油温/℃ | 39.9 | 39.3 |
8 | B泵转速/(r/min) | 3 313 | 3 372 |
9 | B泵流量/(t/h) | 340~358 | 340~358 |
10 | B泵再循环开度/% | 99 | 99 |
11 | B泵抽汽量/(t/h) | 12.5 | 12.4 |
12 | B泵振动位移/µm | 7.33~35.56 | 7.64~33.80 |
13 | B泵回油温/℃ | 38.1 | 38.2 |
Tab. 4 Operating parameters of feed water pump
序号 | 参数 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
1 | 锅炉给水量/(t/h) | 429.44 | 320.24 |
2 | A泵转速/(r/min) | 3 312 | 3 231 |
3 | A泵流量/(t/h) | 340~358 | 340~358 |
4 | A泵再循环开度/% | 100 | 100 |
5 | A泵抽汽量/(t/h) | 14.1 | 14.1 |
6 | A泵振动位移/µm | 7.05~40.69 | 7.35~39.47 |
7 | A泵回油温/℃ | 39.9 | 39.3 |
8 | B泵转速/(r/min) | 3 313 | 3 372 |
9 | B泵流量/(t/h) | 340~358 | 340~358 |
10 | B泵再循环开度/% | 99 | 99 |
11 | B泵抽汽量/(t/h) | 12.5 | 12.4 |
12 | B泵振动位移/µm | 7.33~35.56 | 7.64~33.80 |
13 | B泵回油温/℃ | 38.1 | 38.2 |
试验工况 | 锅炉效率/% | 汽机热耗/[kJ/(kW⋅h)] | 影响煤耗/[g/(kW⋅h)] |
---|---|---|---|
30%额定负荷(105 MW) | 94.77 | 9 455.60 | 72 |
40%额定负荷(140 MW) | 94.61 | 8 948.70 | 51 |
BMCR纯凝工况设计值 | 94.85 | 7 710.00 | — |
Tab. 5 Performance test results
试验工况 | 锅炉效率/% | 汽机热耗/[kJ/(kW⋅h)] | 影响煤耗/[g/(kW⋅h)] |
---|---|---|---|
30%额定负荷(105 MW) | 94.77 | 9 455.60 | 72 |
40%额定负荷(140 MW) | 94.61 | 8 948.70 | 51 |
BMCR纯凝工况设计值 | 94.85 | 7 710.00 | — |
机组负荷/MW | 优化前温度/℃ | 优化后温度/℃ |
---|---|---|
105 | 327.6 | 339.2 |
140 | 338.2 | 365.4 |
175 | 368.9 | 373.9 |
210 | 373.2 | 379.9 |
Tab. 6 Midpoint temperature setting
机组负荷/MW | 优化前温度/℃ | 优化后温度/℃ |
---|---|---|
105 | 327.6 | 339.2 |
140 | 338.2 | 365.4 |
175 | 368.9 | 373.9 |
210 | 373.2 | 379.9 |
序号 | 优化措施 | 预期效果 |
---|---|---|
1 | 单给水泵运行 | 单台出力,另一台维持1 200 r/min热备用,节约耗汽量11 t/h |
2 | 轴封系统调整 | 匹配减温水压力,轴封加热器温度下降2 ℃,轴封冷却用汽量下降1.03 t/h |
3 | 滑压曲线优化 | 拟合主汽压力与热耗率曲线,降低煤耗1.93~4.88 g/(kW⋅h) |
4 | 凝泵变频调整 | 优化凝结水系统运行压力,降低凝结水泵工作电流1~2 A |
5 | 锅炉氧量寻优 | 改善燃烧效果,有效降低飞灰和炉渣含碳量 |
6 | 锅炉床压优化 | 低床压运行一次风机电流下降2.2 A;二次风机电流下降1.8 A |
7 | 二次风调整 | 改变上下二次风配比,优化低氮燃烧氛围 |
Tab. 7 Low-load economical operation optimization
序号 | 优化措施 | 预期效果 |
---|---|---|
1 | 单给水泵运行 | 单台出力,另一台维持1 200 r/min热备用,节约耗汽量11 t/h |
2 | 轴封系统调整 | 匹配减温水压力,轴封加热器温度下降2 ℃,轴封冷却用汽量下降1.03 t/h |
3 | 滑压曲线优化 | 拟合主汽压力与热耗率曲线,降低煤耗1.93~4.88 g/(kW⋅h) |
4 | 凝泵变频调整 | 优化凝结水系统运行压力,降低凝结水泵工作电流1~2 A |
5 | 锅炉氧量寻优 | 改善燃烧效果,有效降低飞灰和炉渣含碳量 |
6 | 锅炉床压优化 | 低床压运行一次风机电流下降2.2 A;二次风机电流下降1.8 A |
7 | 二次风调整 | 改变上下二次风配比,优化低氮燃烧氛围 |
污染物 | 烟气治理设施 | 深度调峰工况 |
---|---|---|
二氧化硫 | 1)炉内喷钙脱硫; 2)炉外石灰石-石膏湿法 烟气脱硫 | 1)炉内喷钙退出; 2)炉外烟气脱硫正常投运 |
氮氧化物 | 1)流化床低氮燃烧技术; 2)旋风分离器进口SNCR; 3)省煤器出口SCR(不喷氨) | 1)低氮燃烧; 2)SNCR+SCR; 3)SNCR少量喷氨 |
烟尘 | 1)电袋复合除尘器; 2)湿法脱硫水洗 | 1)电袋除尘器投运; 2)湿法脱硫正常投运 |
Tab. 8 Air pollutant control facilities
污染物 | 烟气治理设施 | 深度调峰工况 |
---|---|---|
二氧化硫 | 1)炉内喷钙脱硫; 2)炉外石灰石-石膏湿法 烟气脱硫 | 1)炉内喷钙退出; 2)炉外烟气脱硫正常投运 |
氮氧化物 | 1)流化床低氮燃烧技术; 2)旋风分离器进口SNCR; 3)省煤器出口SCR(不喷氨) | 1)低氮燃烧; 2)SNCR+SCR; 3)SNCR少量喷氨 |
烟尘 | 1)电袋复合除尘器; 2)湿法脱硫水洗 | 1)电袋除尘器投运; 2)湿法脱硫正常投运 |
参数 | 窗口温度 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
尿素热解温度/℃ | >360 | 625.7 | 609.3 |
SNCR反应温度/℃ | (730,1 200) | 625.7 | 609.3 |
SCR反应温度/℃ | (300,420) | 271.2 | 197.7 |
低氮燃烧温度/℃ | <1 200 | 827.1 | 853.4 |
Tab. 9 Denitration reaction window temperature
参数 | 窗口温度 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
尿素热解温度/℃ | >360 | 625.7 | 609.3 |
SNCR反应温度/℃ | (730,1 200) | 625.7 | 609.3 |
SCR反应温度/℃ | (300,420) | 271.2 | 197.7 |
低氮燃烧温度/℃ | <1 200 | 827.1 | 853.4 |
运行方式 | 参数 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
SNCR+SCR | SCR入口浓度/(mg/m3) | 109.28 | 159.61 |
SNCR+SCR | SCR出口浓度/(mg/m3) | 17.11 | 18.36 |
SNCR+SCR | SNCR效率/% | 23.02 | 13.82 |
SCR | SCR入口浓度/(mg/m3) | 134.43 | 181.67 |
SCR | SCR出口浓度/(mg/m3) | 30.14 | 16.51 |
SCR | SCR效率/% | 77.58 | 90.91 |
Tab. 10 Denitrification operating parameters
运行方式 | 参数 | 40%负荷工况 | 30%负荷工况 |
---|---|---|---|
SNCR+SCR | SCR入口浓度/(mg/m3) | 109.28 | 159.61 |
SNCR+SCR | SCR出口浓度/(mg/m3) | 17.11 | 18.36 |
SNCR+SCR | SNCR效率/% | 23.02 | 13.82 |
SCR | SCR入口浓度/(mg/m3) | 134.43 | 181.67 |
SCR | SCR出口浓度/(mg/m3) | 30.14 | 16.51 |
SCR | SCR效率/% | 77.58 | 90.91 |
1 | 岳光溪,吕俊复,徐鹏,等 .循环流化床燃烧发展现状及前景分析[J].中国电力,2016,49(1):1-13. |
YUE G X, LV J F, XU P,et al .Development status and prospect analysis of circulating fluidized bed combustion[J].China Electric Power,2016,49(1):1-13. | |
2 | 张少强,陈露,刘子易,等 .大型燃煤锅炉深度调峰关键问题探讨[J].南方能源建设,2022,9(3):16-28. doi:10.16516/j.gedi.issn2095-8676.2022.03.003 |
CHEN S Q, CHEN L, LIU Z Y,et al .Discussion on key problems of depth peak adjustment for large coal-fired boilers[J].Southern Energy Construction,2022,9(3):16-28. doi:10.16516/j.gedi.issn2095-8676.2022.03.003 | |
3 | 刘云锋,李宇峰,王健,等 .汽轮机深度调峰的水蚀问题研究[J].发电技术,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 |
LIU Y F, LI Y F, WANG J,et al .Research on water erosion in deep peak shaving of steam turbines[J].Power Generation Technology,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 | |
4 | 王林,伍刚,张亚夫,等 .1 000 MW深度调峰机组热力系统优化研究[J].发电技术,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 |
WANG L, WU G, ZHANG Y F,et al .Research on thermal system optimization of 1 000 MW deep peak-shaving units[J].Power Generation Technology,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 | |
5 | 李伟,蔡勇,张晓磊,等 .深度调峰工况锅炉主要辅机运行安全性分析[J].广东电力,2019,32(11):63-69. doi:10.3969/j.issn.1007-290X.2019.011.008 |
LI W, CAI Y, ZHANG X L,et al .Operational safety analysis of main auxiliary boilers in deep peak shaving conditions[J].Guangdong Electric Power,2019,32(11):63-69. doi:10.3969/j.issn.1007-290X.2019.011.008 | |
6 | 郭君 .浅析600 MW超临界直流火电机组深度调峰技术措施及运行注意事项[J].电气工程与自动化,2018,27(4):7-8. doi:10.3969/j.issn.1671-0797.2018.27.004 |
GUO J .Analysis of deep peak shaving technical measures and operation precautions for 600 MW supercritical DC thermal power unit[J].Electrical Engineering and Automation,2018,27(4):7-8. doi:10.3969/j.issn.1671-0797.2018.27.004 | |
7 | 牛斌,李丽锋,孙倩,等 .超临界循环流化床机组全负荷段深度调峰方法研究[J].发电技术,2021,42(2):273-279. doi:10.12096/j.2096-4528.pgt.20024 |
NIU B, LI L F, SUN Q,et al .Research on deep peak shaving method in full load section of supercritical circulating fluidized bed units[J].Power Generation Technology,2021,42(2):273-279. doi:10.12096/j.2096-4528.pgt.20024 | |
8 | 王鹏程,邓博宇,蔡晋,等 .超临界循环流化床锅炉深度调峰技术难点及控制策略[J].中国电力,2021,54(5):206-212. doi:10.11930/j.issn.1004-9649.202011107 |
WANG P C, DENG B Y, CAI J,et al .Technical difficulties and control strategies for deep peak regulation of supercritical circulating fluidized bed boilers[J].China Electric Power,2021,54(5):206-212. doi:10.11930/j.issn.1004-9649.202011107 | |
9 | 石友,尹莉,杨虎,等 .2×350 MW超临界循环流化床机组锅炉说明书[Z].成都:东方锅炉电气集团,2017:7. |
SHI Y, YIN L, YANG H,et al .2×350 MW supercritical circulating fluidized bed unit boiler specification[Z].Chengdu:Dongfang Boiler Electric Group,2017:7. | |
10 | 陈文成 .带炉水循环泵直流炉启动阶段给水流量控制[J].热力发电,2014,43(2):100-103. doi:10.3969/j.issn.1002-3364.2014.02.100 |
CHEN W C .The control of the feed water flow in the start-up stage of the once-through furnace with the boiler water circulating pump[J].Thermal Power Generation,2014,43(2):100-103. doi:10.3969/j.issn.1002-3364.2014.02.100 | |
11 | 郭馨,王婷,黄莺,等 .660 MW等级超超临界锅炉低负荷水动力安全性分析[J].电站系统工程,2021,37(5):16-18. |
GUO X, WANG T, HUANG Y,et al .Low-load hydrodynamic safety analysis of 660 MW ultra-supercritical boiler[J].Power Station System Engineering,2021,37(5):16-18. | |
12 | 中华人民共和国国家发展和改革委员会 . 循环流化床锅炉性能试验规程: [S].北京:中国电力出版社,2005. |
National Development and Reform Commission . Performance test code for circulating fluidized bed boiler: [S].Beijing:China Electric Power Press,2005. | |
13 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会 . 电站锅炉性能试验规程: [S].北京:中国标准出版社,2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China,China National Standardization Management Committee . Performance test code for utility boiler: [S].Beijing:China Standard Press,2015. | |
14 | 于浩洋,高明明,张缦,等 .循环流化床机组深度调峰性能分析与评价[J].热力发电,2020,49(5):65-72. doi:10.19666/j.rlfd.202002035 |
YU H Y, GAO M M, ZHANG M,et al .Analysis and evaluation of deep peak shaving performance of circulating fluidized bed units[J].Thermal Power Generation,2020,49(5):65-72. doi:10.19666/j.rlfd.202002035 | |
15 | 何志瞧,陈巍文,张江丰 .660 MW超临界机组深度调峰试验及低负荷段经济性分析[J].浙江电力,2020,39(6):68-73. doi:10.19585/j.zjdl.202006012 |
HE Z Q, CHEN W W, ZHANG J F .In-depth peak shaving test of 660 MW supercritical unit and economic analysis of low load section[J].Zhejiang Electric Power,2020,39(6):68-73. doi:10.19585/j.zjdl.202006012 | |
16 | 程伟,周旭,郭强,等 .350 MW超临界循环流化床锅炉运行特性研究[J].东方电气评论,2016(4):38-42. |
CHENG W, ZHOU X, GUO Q,et al .Research on the operating characteristics of a 350 MW supercritical circulating fluidized bed boiler[J].Dongfang Electric Review,2016(4):38-42. | |
17 | 杨俏发 .循环流化床机组深度调峰试验研究[J].山西电力,2018(6):51-53. doi:10.3969/j.issn.1671-0320.2018.06.014 |
YANG Q F .Experimental study on deep peak shaving of circulating fluidized bed units[J].Shanxi Electric Power,2018(6):51-53. doi:10.3969/j.issn.1671-0320.2018.06.014 | |
18 | 李竞岌,杨海瑞,吕俊复,等 .节能型循环流化床锅炉低氮氧化物排放的分析[J].燃烧科学与技术, 2013,19(4):293-298. doi:10.11715/rskxjs201304002 |
LI J J, YANG H R, LV J F,et al .Analysis of low nitrogen oxide emissions from energy-saving circulating fluidized bed boilers[J].Combustion Science and Technology,2013,19(4):293-298. doi:10.11715/rskxjs201304002 | |
19 | 国家能源局 . 燃煤电厂烟气脱硝装置性能验收试验规范: [S].北京:国家能源局,2012. |
National Energy Administration . Specification for performance acceptance test of flue gas denitrification device in coal-fired power plants: [S].Beijing:National Energy Administration,2012. | |
20 | 巩李明,邓启刚,刘杰,等 .东方350 MW超临界CFB锅炉灵活性改造技术研究[J].节能,2021,8(2):39-41. doi:10.3969/j.issn.1004-7948.2021.08.010 |
GONG L M, DENG Q G, LIU J,et al .Research on flexibility transformation technology of Dongfang 350 MW supercritical CFB boiler[J].Energy Conservation,2021,8(2):39-41. doi:10.3969/j.issn.1004-7948.2021.08.010 | |
21 | 冯荣荣,田亮 .柔性Smith预估控制在循环流化床机组协调控制系统中的应用设计[J].广东电力,2021,34(2):108-114. doi:10.3969/j.issn.1007-290X.2021.002.014 |
FENG R R, TIAN L .Application design of flexible Smith prediction control in the coordinated control system of circulating fluidized bed units[J].Guangdong Electric Power,2021,34(2):108-114. doi:10.3969/j.issn.1007-290X.2021.002.014 | |
22 | 刘吉臻,洪烽,高明明,等 .循环流化床机组快速变负荷运行控制策略研究[J].中国电机工程学报,2017,37(14):4130-4137. doi:10.13334/j.0258-8013.pcsee.161055 |
LIU J Z, HONG F, GAO M M,et al .Research on control strategy for rapidly variable load operation of circulating fluidized bed units[J].Chinese Journal of Electrical Engineering,2017,37(14):4130-4137. doi:10.13334/j.0258-8013.pcsee.161055 |
[1] | Zhongming GAO, Deao ZHU, Yujia CHEN, Sanju LIU, Qinhui WANG. Experimental Study on the Air Gasification Characteristics of Agricultural and Forestry Waste in a Circulating Fluidized Bed [J]. Power Generation Technology, 2024, 45(3): 535-544. |
[2] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[3] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[4] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
[5] | Yanbing LI, Shuwang JIA, Junliang ZHANG, Yue FU, Ming LIU, Junjie YAN. Exergy Economic Analysis of Ultra-Supercritical Coal-Fired Power Plants With High-Level Layout of Turbine Under Load-Cycling Conditions [J]. Power Generation Technology, 2024, 45(1): 69-78. |
[6] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[7] | Zhonghao DONG, Xiaofeng LU, Lichao SHI, Zengzeng YANG, Fansheng KONG, Peng WANG, Guoqiang LIN, Peng ZHAO. Influence of Thermal Inertia of Refractory Material in Furnace on the Peak Regulating Rate of Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2023, 44(4): 514-524. |
[8] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[9] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
[10] | Shuaishuai YAN, Yang LU, Wenhui HOU, Kai LIU. Smart Separator Materials of Intrinsic Safe Lithium Battery for Large-scale Electric Energy Storge [J]. Power Generation Technology, 2022, 43(5): 792-800. |
[11] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
[12] | Yunfeng LIU, Yufeng LI, Jian WANG, Yiliang MA, Chun GUAN. Study on Water Erosion in Deep Peak Shaving of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 473-479. |
[13] | Bin NIU, Lifeng LI, Qian SUN, Peihua ZHANG. Research on the Method of Depth Peaking at Full Load of Supercritical Circulating Fluidized Bed Unit [J]. Power Generation Technology, 2021, 42(2): 273-279. |
[14] | Kaiyun ZHENG. Study on Cold End Temperature Optimization of Supercritical CO2 Cycle [J]. Power Generation Technology, 2021, 42(2): 261-266. |
[15] | Guohua QIU, Pengzhi XU. Analysis on Corrosion Causes of Induced Draft Fan Blade in Circulating Fluidized Bed Boiler With Mixed Burning Solid Waste Fuel [J]. Power Generation Technology, 2020, 41(6): 681-688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||