Power Generation Technology ›› 2024, Vol. 45 ›› Issue (3): 392-400.DOI: 10.12096/j.2096-4528.pgt.24024
• Flexible Power Generation Technology • Previous Articles Next Articles
Xiaofeng CHEN1, Chuan ZUO1, Ning ZHAO1, Kai HUANG2, Huijie WANG2
Received:
2024-01-31
Revised:
2024-02-29
Published:
2024-06-30
Online:
2024-07-01
Supported by:
CLC Number:
Xiaofeng CHEN, Chuan ZUO, Ning ZHAO, Kai HUANG, Huijie WANG. Analysis on Peak Regulation Characteristics of Thermal Power Units With Integrated Heat Storage Device[J]. Power Generation Technology, 2024, 45(3): 392-400.
热负荷 | 调峰增量 | |||
---|---|---|---|---|
20 MW 蓄热罐 | 40 MW 蓄热罐 | 60 MW 蓄热罐 | 80 MW 蓄热罐 | |
135 | 3.45 | 6.90 | 10.34 | 13.79 |
144 | 3.45 | 6.90 | 10.34 | 13.79 |
153 | 5.86 | 9.31 | 12.75 | 16.20 |
162 | 11.15 | 14.60 | 18.05 | 21.49 |
171 | 15.47 | 20.01 | 23.46 | 26.91 |
180 | 17.05 | 25.53 | 28.98 | 32.43 |
189 | 17.05 | 31.43 | 34.62 | 38.07 |
198 | 17.05 | 33.08 | 40.37 | 43.82 |
207 | 17.05 | 33.08 | 46.21 | 49.65 |
216 | 17.05 | 33.08 | 49.10 | 55.65 |
225 | 17.05 | 33.08 | 49.10 | 61.61 |
234 | 17.05 | 33.08 | 49.10 | 64.13 |
Tab. 1 Peak load increment of heat storage tank with different power under different heat loads
热负荷 | 调峰增量 | |||
---|---|---|---|---|
20 MW 蓄热罐 | 40 MW 蓄热罐 | 60 MW 蓄热罐 | 80 MW 蓄热罐 | |
135 | 3.45 | 6.90 | 10.34 | 13.79 |
144 | 3.45 | 6.90 | 10.34 | 13.79 |
153 | 5.86 | 9.31 | 12.75 | 16.20 |
162 | 11.15 | 14.60 | 18.05 | 21.49 |
171 | 15.47 | 20.01 | 23.46 | 26.91 |
180 | 17.05 | 25.53 | 28.98 | 32.43 |
189 | 17.05 | 31.43 | 34.62 | 38.07 |
198 | 17.05 | 33.08 | 40.37 | 43.82 |
207 | 17.05 | 33.08 | 46.21 | 49.65 |
216 | 17.05 | 33.08 | 49.10 | 55.65 |
225 | 17.05 | 33.08 | 49.10 | 61.61 |
234 | 17.05 | 33.08 | 49.10 | 64.13 |
时刻 | 原始最低电负荷/MW | 优化后最低电负荷/MW | 时刻 | 原始最低电负荷/MW | 优化后最低电负荷/MW |
---|---|---|---|---|---|
01:00 | 173.16 | 141.01 | 13:00 | 142.35 | 140.25 |
02:00 | 176.68 | 140.59 | 14:00 | 140.46 | 140.32 |
03:00 | 178.06 | 140.34 | 15:00 | 141.72 | 140.65 |
04:00 | 198.37 | 246.52 | 16:00 | 142.98 | 141.89 |
05:00 | 199.38 | 247.14 | 17:00 | 151.65 | 140.45 |
06:00 | 199.44 | 244.63 | 18:00 | 151.78 | 141.61 |
07:00 | 210.76 | 258.80 | 19:00 | 159.64 | 140.45 |
08:00 | 209.63 | 250.27 | 20:00 | 159.76 | 140.36 |
09:00 | 184.48 | 141.89 | 21:00 | 187.62 | 230.52 |
10:00 | 165.61 | 141.12 | 22:00 | 185.10 | 227.97 |
11:00 | 141.09 | 140.42 | 23:00 | 171.90 | 140.25 |
12:00 | 141.72 | 140.21 | 24:00 | 172.53 | 141.36 |
Tab. 2 Comparison of output results of electricity load optimization in November
时刻 | 原始最低电负荷/MW | 优化后最低电负荷/MW | 时刻 | 原始最低电负荷/MW | 优化后最低电负荷/MW |
---|---|---|---|---|---|
01:00 | 173.16 | 141.01 | 13:00 | 142.35 | 140.25 |
02:00 | 176.68 | 140.59 | 14:00 | 140.46 | 140.32 |
03:00 | 178.06 | 140.34 | 15:00 | 141.72 | 140.65 |
04:00 | 198.37 | 246.52 | 16:00 | 142.98 | 141.89 |
05:00 | 199.38 | 247.14 | 17:00 | 151.65 | 140.45 |
06:00 | 199.44 | 244.63 | 18:00 | 151.78 | 141.61 |
07:00 | 210.76 | 258.80 | 19:00 | 159.64 | 140.45 |
08:00 | 209.63 | 250.27 | 20:00 | 159.76 | 140.36 |
09:00 | 184.48 | 141.89 | 21:00 | 187.62 | 230.52 |
10:00 | 165.61 | 141.12 | 22:00 | 185.10 | 227.97 |
11:00 | 141.09 | 140.42 | 23:00 | 171.90 | 140.25 |
12:00 | 141.72 | 140.21 | 24:00 | 172.53 | 141.36 |
1 | 李雄威,王昕,顾佳伟,等 .考虑火电深度调峰的风光火储系统日前优化调度[J].中国电力,2023,56(1):1-7. |
LI X W, WANG X, GU J W,et al .Day-ahead optimal dispatching of wind-solar-thermal power storage system considering deep peak shaving of thermal power[J].Electric Power,2023,56(1):1-7. | |
2 | 周保中,刘敦楠,张继广,等 .“风光火一体化”多能互补项目优化配置研究[J].发电技术,2022,43(1):10-18. doi:10.12096/j.2096-4528.pgt.21101 |
ZHOU B Z, LIU D N, ZHANG J G,et al .Research on optimal allocation of multi-energy complementary project of wind-solar-thermal integration[J].Power Generation Technology,2022,43(1):10-18. doi:10.12096/j.2096-4528.pgt.21101 | |
3 | 德格吉日夫,田雪沁,王新雷,等 .计及运行成本与排放量的风光火储联合外送调度多目标优化模型研究[J].电网与清洁能源,2022,38(6):121-128. doi:10.3969/j.issn.1674-3814.2022.06.016 |
DE G, TIAN X Q, WANG X L,et al .Research on multi-objective optimization model of the combined outward transmission dispatching of wind,solar,thermal-power and storage considering operation cost and emission[J].Power System and Clean Energy,2022,38(6):121-128. doi:10.3969/j.issn.1674-3814.2022.06.016 | |
4 | 吴雄,贺明康,何雯雯,等 .考虑储能寿命的风-光-火-储打捆外送系统容量优化配置[J].电力系统保护与控制,2023,51(15):66-75. |
WU X, HE M K, HE W W,et al .Optimal capacity of a wind-solar-thermo-storage-bundled power transmission system considering battery life[J].Power System Protection and Control,2023,51(15):66-75. | |
5 | 王放放,杨鹏威,赵光金,等 .新型电力系统下火电机组灵活性运行技术发展及挑战[J/OL].发电技术,2023:1-12.(2023-12-28).. |
WANG F F, YANG P W, ZHAO G J,et al .Development and challenge of flexible operation technology of power plants under new power system[J/OL].Power Generation Technology,2023:1-12.(2023-12-28).. | |
6 | 张辉,顾秀芳,陈艳宁,等 .考虑风电消纳的热电厂蓄热罐效益成本分析[J].发电技术,2022,43(4):664-672. doi:10.12096/j.2096-4528.pgt.20109 |
ZHANG H, GU X F, CHEN Y N,et al .Benefit cost analysis of thermal storage tank in thermal power plant considering wind power consumption[J].Power Generation Technology,2022,43(4):664-672. doi:10.12096/j.2096-4528.pgt.20109 | |
7 | 成美丽,成天乐,符茜茜,等 .考虑配网功率约束及可靠供暖的蓄热式电采暖系统优化调度方法[J].电测与仪表,2024,61(2):115-121. |
CHENG M L, CHENG T L, FU Q Q,et al .Optimal dispatching method for regenerative electric heating system considering the heating reliability and power constraint of distribution network[J].Electrical Measurement & Instrumentation,2024,61(2):115-121. | |
8 | 葛星,滕佳颖,王鹏鹰 .基于增量替代的蓄热式电采暖系统推广模式研究[J].内蒙古电力技术,2022,40(4):74-80. |
GE X, TENG J Y, WANG P Y .Research on extension mode of regenerative electric heating system based on incremental substitution[J].Inner Mongolia Electric Power,2022,40(4):74-80. | |
9 | 杨玉龙,王淞,陈韬,等 .基于蓄热水箱温度可行域模糊确定的电锅炉优化调度方法[J].电力建设,2023,44(7):111-120. |
YANG Y L, WANG S, CHEN T,et al .Optimal scheduling method of electric boiler based on fuzzy determination of temperature feasible region of hot water storage tank[J].Electric Power Construction,2023,44(7):111-120. | |
10 | 靳文睿,张靖,曹祥,等 .采用城市供暖管网低温回水的热泵供暖系统性能分析[J].制冷技术,2020,40(6):66-69. doi:10.3969/j.issn.2095-4468.2020.06.205 |
JIN W R, ZHANG J, CAO X,et al .Performance analysis of heat pump heating system using low temperature backwater in urban heating network[J].Chinese Journal of Refrigeration Technology,2020,40(6):66-69. doi:10.3969/j.issn.2095-4468.2020.06.205 | |
11 | WANG D, HAN X, LI H,et al .Modeling and control method of combined heat and power plant with integrated hot water storage tank[J].Applied Thermal Engineering,2023,226:120314. doi:10.1016/j.applthermaleng.2023.120314 |
12 | 江瑞平 .能源危机重创全球经济[J].世界知识,2022(21):72-73. |
JIANG R P .The energy crisis hit the global economy hard[J].World Affairs,2022(21):72-73. | |
13 | 王哮江,刘鹏,李荣春,等 .“双碳” 目标下先进发电技术研究进展及展望[J].热力发电,2022,51(1):52-59. |
WANG X J, LIU P, LI R C,et al .Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality[J].Thermal Power Generation,2022,51(1):52-59. | |
14 | 王振浩,杨璐,田春光,等 .考虑风电消纳的风电-电储能-蓄热式电锅炉联合系统能量优化[J].中国电机工程学报,2017,37(S1):137-143. |
WANG Z H, YANG L, TIAN C G,et al .Energy optimization of wind power-electric energy storage-regenerative electric boiler combined system considering wind power consumption[J].Proceedings of the CSEE,2017,37(S1):137-143. | |
15 | KOPISKE J, SPIEKER S, TSATSARONIS G .Value of power plant flexibility in power systems with high shares of variable renewables:a scenario outlook for Germany 2035[J].Energy,2017,137:823-833. doi:10.1016/j.energy.2017.04.138 |
16 | 郭通 .电力系统灵活性评价及灵活性改造规划研究[D].北京:华北电力大学,2020. |
GUO T .Research on evaluation of power system flexibility and flexibility retrofit planning[D].Beijing:North China Electric Power University,2020. | |
17 | 汉京晓,穆世慧 .典型蓄热技术在供热领域的应用分析[J].能源与节能,2019(4):54-57. doi:10.3969/j.issn.2095-0802.2019.04.026 |
HAN J X, MU S H .Application analysis of typical thermal storage technology in heating field[J].Energy and Energy Conservation,2019(4):54-57. doi:10.3969/j.issn.2095-0802.2019.04.026 | |
18 | TROJAN M, TALER D, DZIERWA P,et al .The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit[J].Energy,2019,173:926-936. doi:10.1016/j.energy.2019.02.059 |
19 | 杨海生,张拓,唐广通,等 .蓄热水罐技术对供热机组的调峰性能影响及补偿成本分析[J].汽轮机技术,2020,62(5):385-388. doi:10.3969/j.issn.1001-5884.2020.05.018 |
YANG H S, ZHANG T, TANG G T,et al .Influence of thermal storage tank technology on peak shaving performance of heating unit and its effect analysis[J].Turbine Technology,2020,62(5):385-388. doi:10.3969/j.issn.1001-5884.2020.05.018 | |
20 | URBANECK T .Water tank stores for medium/large applications[M]//Encyclopedia of Energy Storage.Amsterdam:Elsevier,2022:394-409. doi:10.1016/b978-0-12-819723-3.00007-x |
21 | DE LA CRUZ-LOREDO I, ZINSMEISTER D, LICKLEDERER T,et al .Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank[J].Applied Energy,2023,332:120556. doi:10.1016/j.apenergy.2022.120556 |
22 | WU Y, FU L, ZHANG S,et al .Study on a novel co-operated heat and power system for improving energy efficiency and flexibility of cogeneration plants[J].Applied Thermal Engineering,2019,163:114429. doi:10.1016/j.applthermaleng.2019.114429 |
23 | 杨波,李政 .火电机组热力系统主导因素变工况建模方法研究[J].中国电机工程学报,2005,25(24):96-102. doi:10.3321/j.issn:0258-8013.2005.24.017 |
YANG B, LI Z .Dominant factor modelling method for the thermal system of power station[J].Proceedings of the CSEE,2005,25(24):96-102. doi:10.3321/j.issn:0258-8013.2005.24.017 | |
24 | MEDICA-VIOLA V, PAVKOVIĆ B, MRZLJAK V .Numerical model for on-condition monitoring of condenser in coal-fired power plants[J].International Journal of Heat and Mass Transfer,2018,117:912-923. doi:10.1016/j.ijheatmasstransfer.2017.10.047 |
[1] | Wang LIU, Lian CHEN, Gaoyang GONG, Zhihua LI, Wenhua XUE, Jingang SHI, Jun XIE, Leilei LI, Rongcai YAO, Zhaopeng WANG, Yanxi YANG, Yi DENG, Chenhui ZHANG. Research on Predictive Maintenance Mode of Air Preheater Based on Digital Twin [J]. Power Generation Technology, 2024, 45(4): 622-632. |
[2] | Zheng YANG, Yipeng SUN, Zhiqiang WEN, Liang CHENG, Zhanguo LI. Research on Dry-Wet Conversion Strategy of Supercritical Thermal Power Units Under Deep Peaking Condition [J]. Power Generation Technology, 2024, 45(2): 233-239. |
[3] | Zhan LI, Zhenyong YANG, Lei LIU, Zhensan CHEN, Weiming JI, Feng HONG. Analysis of the Influence of Furnace Side Heat Storage Coefficient on Primary Frequency Modulation Capacity Under Deep Modulation Condition of Thermal Power Unit [J]. Power Generation Technology, 2024, 45(2): 226-232. |
[4] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[5] | Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU. Analysis on Thermoelectric Decoupling Technology Paths for Thermal Power Units Under the Background of Deep Peak-Shaving [J]. Power Generation Technology, 2024, 45(2): 207-215. |
[6] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[7] | Jizhen AN, Fuhao ZHENG, Yifan LIU, Heng CHEN, Gang XU. Study on Induced Draft Fan Fault Warning of Thermal Power Unit Based on Big Data Analysis [J]. Power Generation Technology, 2023, 44(4): 557-564. |
[8] | Zhonghao DONG, Xiaofeng LU, Lichao SHI, Zengzeng YANG, Fansheng KONG, Peng WANG, Guoqiang LIN, Peng ZHAO. Influence of Thermal Inertia of Refractory Material in Furnace on the Peak Regulating Rate of Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2023, 44(4): 514-524. |
[9] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[10] | Xiufeng YAN, Ke ZONG, Xiunian HE, Lin GAO, Bin QIN, Mingkun WANG, Wentao HUI. Research on Steam Temperature Control Strategy in Peak Regulation of 1 000 MW Coal Power Unit [J]. Power Generation Technology, 2022, 43(3): 518-522. |
[11] | Xiankui WEN,Shihai ZHAGN,Tongtian DENG,Pan LI,Wen CHEN. A Summary of Large Capacity Power Energy Storage Peak Regulation and Frequency Adjustment Performance [J]. Power Generation Technology, 2018, 39(6): 487-492. |
[12] | Jiang TANG,Xuedong WANG,Yuzhu ZHAO,Chuanwu YAN. Analysis of Performance Indicators and Peak Regulation Capacity of Condensing Unit After High Back Pressure Retrofit for Heating [J]. Power Generation Technology, 2018, 39(5): 455-461. |
[13] | Shuming LI,Qingsong LIU,Xiaodong ZHU,Shibin PING,Guisheng BAI. Flexibility Transformation Analysis of 350 MW Supercritical Cogeneration Unit [J]. Power Generation Technology, 2018, 39(5): 449-454. |
[14] | Xiaojuan HAN,Yaoyao AI,Xiangjun LI. Application Value of Energy Storage Systems in the Power Grid and Its Commercial Modes [J]. Power Generation Technology, 2018, 39(1): 77-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||