Power Generation Technology ›› 2023, Vol. 44 ›› Issue (6): 842-849.DOI: 10.12096/j.2096-4528.pgt.21118
• Power Generation and Environmental Protection • Previous Articles Next Articles
Deyang GAO1, Zhongyi JIANG2,3, Kai ZHANG2,3, Jinghui MENG2,3
Received:
2022-01-02
Published:
2023-12-31
Online:
2023-12-28
Contact:
Jinghui MENG
Supported by:
CLC Number:
Deyang GAO, Zhongyi JIANG, Kai ZHANG, Jinghui MENG. Research on Performance Optimization of Semiconductor Thermoelectric Generaor Based on Phase Change Material[J]. Power Generation Technology, 2023, 44(6): 842-849.
材料 | 塞贝克系数S/(V⋅K-1) | 密度ρ/(kg⋅m-3) | 电导率σ/(S⋅m-1) | 定压比热容Cp /(kJ⋅kg-1⋅K-1) | 导热系数k/(W⋅m-1⋅K-1) |
---|---|---|---|---|---|
Cu | — | 8 960 | — | 0.385 | 400 |
Al2O3 | — | 2 329 | — | 0.700 | 130 |
Bi方正汇总行2Te3 | (22 224+930.6T-0.990 5T2)×10-9 | 7 700 | 1/(5 112+163.4T+0.627 9T2)×10-10 | 0.154 | (6 260-5 277.7T+ 0.413 1T2)×10-4 |
Tab. 1 Physical parameters of thermoelectric materials
材料 | 塞贝克系数S/(V⋅K-1) | 密度ρ/(kg⋅m-3) | 电导率σ/(S⋅m-1) | 定压比热容Cp /(kJ⋅kg-1⋅K-1) | 导热系数k/(W⋅m-1⋅K-1) |
---|---|---|---|---|---|
Cu | — | 8 960 | — | 0.385 | 400 |
Al2O3 | — | 2 329 | — | 0.700 | 130 |
Bi方正汇总行2Te3 | (22 224+930.6T-0.990 5T2)×10-9 | 7 700 | 1/(5 112+163.4T+0.627 9T2)×10-10 | 0.154 | (6 260-5 277.7T+ 0.413 1T2)×10-4 |
PCM种类 | 相变温度Tm /℃ | 密度ρ/(kg⋅m-3) | 相变潜热L/(kJ⋅kg-1) | 定压比热容Cp /(kJ⋅kg-1⋅K-1) | 导热系数k/(W⋅m-1⋅K-1) |
---|---|---|---|---|---|
石蜡 | 65.0 | 916(s),790(l) | 173.6 | 3.00(s),2.00(l) | 0.346(s),0.167(l) |
癸酸 | 30.5 | 1 004(s),886(l) | 159.0 | 2.47(s),2.03(l) | 0.150 |
Tab. 2 Physical parameters of PCM
PCM种类 | 相变温度Tm /℃ | 密度ρ/(kg⋅m-3) | 相变潜热L/(kJ⋅kg-1) | 定压比热容Cp /(kJ⋅kg-1⋅K-1) | 导热系数k/(W⋅m-1⋅K-1) |
---|---|---|---|---|---|
石蜡 | 65.0 | 916(s),790(l) | 173.6 | 3.00(s),2.00(l) | 0.346(s),0.167(l) |
癸酸 | 30.5 | 1 004(s),886(l) | 159.0 | 2.47(s),2.03(l) | 0.150 |
网格类型 | 网格数量 | 误差(与超细化网格相比)/% |
---|---|---|
常规 | 4 292 | 0.74 |
细化 | 7 099 | 0.27 |
较细化 | 14 454 | 0.31 |
超细化 | 49 552 | 0 |
Tab. 3 The number and error of all kinds of grids
网格类型 | 网格数量 | 误差(与超细化网格相比)/% |
---|---|---|
常规 | 4 292 | 0.74 |
细化 | 7 099 | 0.27 |
较细化 | 14 454 | 0.31 |
超细化 | 49 552 | 0 |
方案 | PCM在TEG的位置 | ||
---|---|---|---|
冷侧 | 热侧 | 双侧 | |
PCM内有骨架 | 1 834.7 | 482.9 | 1 424.3 |
PCM内无骨架 | 1 703.3 | 478.0 | 1 314.9 |
Tab. 4 Comparison of total output voltage of three design models in 500 s
方案 | PCM在TEG的位置 | ||
---|---|---|---|
冷侧 | 热侧 | 双侧 | |
PCM内有骨架 | 1 834.7 | 482.9 | 1 424.3 |
PCM内无骨架 | 1 703.3 | 478.0 | 1 314.9 |
1 | 朱凌云,李国能,康泰云,等 .基于生物质燃料的水冷式温差发电机的实验研究[J].发电技术,2019,40(2):148-154. doi:10.12096/j.2096-4528.pgt.18161 |
ZHU L Y, LI G N, KANG T Y,et al .Experimental study on a water cooled thermoelectric generator based on biomass fuel[J].Power Generation Technology,2019,40(2):148-154. doi:10.12096/j.2096-4528.pgt.18161 | |
2 | 侍园园,董聪,王文超,等 .基于液态介质的温差发电串并联实验与仿真研究[J].发电技术,2021,42(5):614-621. doi:10.1016/s0302-2838(02)00437-2 |
SHI Y Y, DONG C, WANG W C,et al .Experimental and simulation study of series-parallel thermoelectric power generation model based on liquid medium[J].Power Generation Technology,2021,. doi:10.1016/s0302-2838(02)00437-2 | |
42(5):614-621. doi:10.1016/s0302-2838(02)00437-2 | |
3 | 吴晋蒙,陈燕,马春燕,等 .锅炉余热回收温差发电装置设计与性能分析[J].电源技术,2021,45(2):232-235. doi:10.3969/j.issn.1002-087X.2021.02.022 |
WU J M, CHEN Y, MA C Y,et al .Design and performance analysis of thermoelectric power generation device for boiler waste heat recovery[J].Chinese Journal of Power Sources,2021,45(2):232-235. doi:10.3969/j.issn.1002-087X.2021.02.022 | |
4 | 杨玉荣,王世学 .具有PCM的汽车尾气温差发电器的变工况模拟[J].热科学与技术,2020,19(3):270-275. doi:10.13738/j.issn.1671-8097.018149 |
YANG Y R, WANG S X .Numerical simulation on automotive exhaust thermoelectric generator with phase change material[J].Journal of Thermal Science and Technology,2020,19(3):270-275. doi:10.13738/j.issn.1671-8097.018149 | |
5 | VOROBIEV Y, GONZALEZ-HERNANDEZ J, VOROBIEV P,et al .Thermal-photovoltaic solar hybrid system for efficient solar energy conversion[J].Solar Energy,2006,80(2):170-176. doi:10.1016/j.solener.2005.04.022 |
6 | WEBER J, POTJE-KAMLOTH K, HAASE F,et al .Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics[J].Sensors and Actuators A:Physical,2006,132(1):325-330. doi:10.1016/j.sna.2006.04.054 |
7 | ELEFSINIOTIS A, BECKER T, SCHMID U .Thermoelectric energy harvesting using phase change materials (PCMs) in high temperature environments in aircraft[J].Journal of Electronic Materials,2014,. doi:10.1007/s11664-013-2880-9 |
43(6):1809-1814. doi:10.1007/s11664-013-2880-9 | |
8 | VINING C .An inconvenient truth about thermoelectrics[J].Nature Materials,2009,8(2):83-85. doi:10.1038/nmat2361 |
9 | SOOTSMAN J, CHUNG D, KANATZIDIS M .New and old concepts in thermoelectric materials[J].Angewandte Chemie International Edition,2009,48(46):8616-8639. doi:10.1002/anie.200900598 |
10 | MA Z, WEI J, SONG P,et al .Review of experimental approaches for improving ZT of thermoelectric materials[J].Materials Science in Semiconductor Processing,2021,121:105303. doi:10.1016/j.mssp.2020.105303 |
11 | REZANIA A, ROSENDAHL L .A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application[J].Energy Conversion and Management,2015,101:730-737. doi:10.1016/j.enconman.2015.05.064 |
12 | SELVAM C, MANIKANDAN S, KRISHNA N V,et al .Enhanced thermal performance of a thermoelectric generator with phase change materials[J].International Communications in Heat and Mass Transfer,2020,114:104561. doi:10.1016/j.icheatmasstransfer.2020.104561 |
13 | KIZIROGLOU M, SAMSON D, BECKER T,et al .Optimization of heat flow for phase change thermoelectric harvesters[EB/OL].(2011-11-15)[2021-10-01].. |
14 | ELEFSINIOTIS A, KIZIROGLOU M, WRIGHT S,et al .Performance evaluation of a thermoelectric energy harvesting device using various phase change materials[J].Journal of Physics:Conference Series,2013,476(1):012020. doi:10.1088/1742-6596/476/1/012020 |
15 | ATOUEI S, REZANIA A, RANJBAR A .Protection and thermal management of thermoelectric generator system using phase change materials:An experimental investigation[J].Energy,2018,156:311-318. doi:10.1016/j.energy.2018.05.109 |
16 | JAWORSKI M, BEDNARCZYK M, CZACHOR M .Experimental investigation of thermoelectric generator (TEG) with PCM module[J].Applied Thermal Engineering,2016,96:527-533. doi:10.1016/j.applthermaleng.2015.12.005 |
17 | TAN L, SINGH R, AKBARZADEH A,et al .Thermal performance of two-phase closed thermosyphon in application of concentrated thermoelectric power generator using phase change material thermal storage[J].Frontiers in Heat Pipes (FHP),2012,2(4):043001. doi:10.5098/fhp.v2.4.3001 |
[1] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
[2] | Zeyang CUI, Xiangling KONG, Jinglun FU, Jiajun SHI. An Image-Based Turbine Blade Parameter Inspection Method [J]. Power Generation Technology, 2024, 45(1): 106-112. |
[3] | Zexu WANG, Kehan HE, Chen SUN, Kaixuan LI, Xing JU. Research on Battery Thermal Management of Pouch Cell Using a Phase Change Material-Based Thermal Switch [J]. Power Generation Technology, 2022, 43(5): 810-822. |
[4] | Wenjun KONG, Yansen ZHANG, Xiaoping TANG, Weikuo ZHANG. Study on Heat Production Characteristics of Lithium-ion Batteries for Large Capacity Energy Storage [J]. Power Generation Technology, 2022, 43(5): 801-809. |
[5] | Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch [J]. Power Generation Technology, 2022, 43(2): 328-340. |
[6] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[7] | Qian LIU, Qianlei SHI, Kaixuan LI, Chao XU, Zhirong LIAO, Xing JU. Research on Immersion Cooling Thermal Management of Lithium Ion Battery Combined With Checkerboard Topology Diversion Structure [J]. Power Generation Technology, 2021, 42(2): 218-229. |
[8] | Jiaming WANG,Hao YU,Wuhui CHEN. Research on Commutation Failure in Multi-feed HVDC Transmission System [J]. Power Generation Technology, 2020, 41(4): 335-345. |
[9] | Kuang YU,Jiaan WANG,Taoying WANG,Chen CHEN. Cause Analysis of Burst Tube of Final-Stage Superheater Tube in a Power Station Boiler [J]. Power Generation Technology, 2019, 40(2): 192-195. |
[10] | Bo XU,Hai ZHAO,Qiang GAO. Analysis on the Leakage of Boiler Heating Surface Tube of Thermal Power Plant [J]. Power Generation Technology, 2018, 39(6): 537-541. |
[11] | Jiaan WANG,Xinghe WANG,Ruichen ZHANG,Jun HE,Longxin MA,Jialei GUO. Typical Case Analysis of EH Oil Pipeline Leakage and Prevention Measures [J]. Power Generation Technology, 2018, 39(4): 382-385. |
[12] | CHEN Shi-ling. Reason Analysis and Treatment for Cracking in Reheater Attemperator [J]. Power Generation Technology, 2017, 38(3): 14-17,13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||