Power Generation Technology ›› 2023, Vol. 44 ›› Issue (3): 340-349.DOI: 10.12096/j.2096-4528.pgt.22184
• Key technologies of green hydrogen preparation, storage and multi-scenario application • Previous Articles Next Articles
Shuhan ZHANG, Xiaofeng MA, Ruilin ZHANG, Yanqun ZHU, Yong HE, Zhihua WANG
Received:
2022-12-27
Published:
2023-06-30
Online:
2023-06-30
Contact:
Zhihua WANG
Supported by:
CLC Number:
Shuhan ZHANG, Xiaofeng MA, Ruilin ZHANG, Yanqun ZHU, Yong HE, Zhihua WANG. An Efficient Mn-Ir Doped Supported Catalyst for PEM Water Electrolysis[J]. Power Generation Technology, 2023, 44(3): 340-349.
催化剂 | 电解液 | 10 mA/cm2时过电位/mV | Tafel斜率/(mV/dec) | 参考文献 |
---|---|---|---|---|
IrO2@α-MnO2 | 0.1 mol/L HClO4 | 275 | 59 | [ |
(Mn0.8Ir0.2)O2 | 0.5 mol/L H2SO4 | 240 | 46 | [ |
(Ir0.3Mn0.7)O2 | 0.1 mol/L H2SO4 | 383 | 49 | [ |
IrO2-RuO2@Ru | 0.5 mol/L H2SO4 | 281 | 53.1 | [ |
Ir0.7Co0.3O x | 0.5 mol/L H2SO4 | 320 | 40 | [ |
IrO2/Ti | 0.1 mol/L HClO4 | 250 | 50.4 | [ |
Li-IrO x | 0.5 mol/L H2SO4 | 300 | 39 | [ |
Mn7.5O10Br3 | 0.5 mol/L H2SO4 | 295 | 68 | [ |
IrO x /α-MnO2 | 0.5 mol/L H2SO4 | 245 | 64 | 本文 |
IrO x /β-MnO2 | 0.5 mol/L H2SO4 | 228 | 46 | 本文 |
IrO x /Mn8O10Cl3 | 0.5 mol/L H2SO4 | 230 | 45 | 本文 |
Tab. 1 Comparison of OER activities of different catalysts
催化剂 | 电解液 | 10 mA/cm2时过电位/mV | Tafel斜率/(mV/dec) | 参考文献 |
---|---|---|---|---|
IrO2@α-MnO2 | 0.1 mol/L HClO4 | 275 | 59 | [ |
(Mn0.8Ir0.2)O2 | 0.5 mol/L H2SO4 | 240 | 46 | [ |
(Ir0.3Mn0.7)O2 | 0.1 mol/L H2SO4 | 383 | 49 | [ |
IrO2-RuO2@Ru | 0.5 mol/L H2SO4 | 281 | 53.1 | [ |
Ir0.7Co0.3O x | 0.5 mol/L H2SO4 | 320 | 40 | [ |
IrO2/Ti | 0.1 mol/L HClO4 | 250 | 50.4 | [ |
Li-IrO x | 0.5 mol/L H2SO4 | 300 | 39 | [ |
Mn7.5O10Br3 | 0.5 mol/L H2SO4 | 295 | 68 | [ |
IrO x /α-MnO2 | 0.5 mol/L H2SO4 | 245 | 64 | 本文 |
IrO x /β-MnO2 | 0.5 mol/L H2SO4 | 228 | 46 | 本文 |
IrO x /Mn8O10Cl3 | 0.5 mol/L H2SO4 | 230 | 45 | 本文 |
催化剂 | Ir原子分数/% | Mn原子分数/% | Cl原子分数/% | O原子分数/% | Ir质量分数/% |
---|---|---|---|---|---|
IrO x /Mn8O10Cl3 | 14.40 | 21.40 | 7.49 | 56.71 | 54.10 |
IrO x /β-MnO2 | 14.19 | 20.98 | — | 64.83 | 55.47 |
IrO x /α-MnO2 | 12.45 | 21.00 | — | 66.55 | 51.89 |
Tab. 2 Catalyst element composition
催化剂 | Ir原子分数/% | Mn原子分数/% | Cl原子分数/% | O原子分数/% | Ir质量分数/% |
---|---|---|---|---|---|
IrO x /Mn8O10Cl3 | 14.40 | 21.40 | 7.49 | 56.71 | 54.10 |
IrO x /β-MnO2 | 14.19 | 20.98 | — | 64.83 | 55.47 |
IrO x /α-MnO2 | 12.45 | 21.00 | — | 66.55 | 51.89 |
催化剂 | Ometal-O | OOH | OH2O | IrIII相对面积/% | |||
---|---|---|---|---|---|---|---|
结合能/eV | 相对面积/% | 结合能/eV | 相对面积/% | 结合能/eV | 相对面积/% | ||
IrO x /Mn8O10Cl3 | 530.00 | 27.97 | 531.42 | 46.46 | 532.62 | 25.57 | 28.92 |
IrO x /β-MnO2 | 530.20 | 29.62 | 531.50 | 45.52 | 532.60 | 24.86 | 27.89 |
IrO x /α-MnO2 | 529.92 | 33.39 | 531.45 | 42.60 | 532.62 | 24.01 | 26.44 |
Tab. 3 The binding energy and relative area of O1s peak, and relative area of IrIII
催化剂 | Ometal-O | OOH | OH2O | IrIII相对面积/% | |||
---|---|---|---|---|---|---|---|
结合能/eV | 相对面积/% | 结合能/eV | 相对面积/% | 结合能/eV | 相对面积/% | ||
IrO x /Mn8O10Cl3 | 530.00 | 27.97 | 531.42 | 46.46 | 532.62 | 25.57 | 28.92 |
IrO x /β-MnO2 | 530.20 | 29.62 | 531.50 | 45.52 | 532.60 | 24.86 | 27.89 |
IrO x /α-MnO2 | 529.92 | 33.39 | 531.45 | 42.60 | 532.62 | 24.01 | 26.44 |
1 | DETZ R J, REEK J N H, VAN DER ZWAAN B C C .The future of solar fuels:when could they become competitive[J].Energy & Environmental Science,2018,11(7):1653-1669. doi:10.1039/c8ee00111a |
2 | JACOBSON M Z, DELUCCHI M A .Providing all global energy with wind,water,and solar power,part I: technologies,energy resources,quantities and areas of infrastructure,and materials[J].Energy Policy,2011,39(3):1154-1169. doi:10.1016/j.enpol.2010.11.040 |
3 | 李英峰,张涛,张衡,等 .太阳能光伏光热高效综合利用技术[J].发电技术,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 |
LI Y F, ZHANG T, ZHANG H,et al .Efficient and comprehensive photovoltaic/photothermal utilization technologies for solar energy[J].Power Generation Technology,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 | |
4 | 丁峰,李晓刚,梁泽琪,等 .国外可再生能源发展经验及其对我国相关扶持政策的启示[J].电力建设,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 |
DING F, LI X G, LIANG Z Q,et al .Review of foreign experience in promoting renewable energy development and inspiration to China[J].Electric Power Construction,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 | |
5 | LIU Y, LIANG X, CHEN H,et al .Iridium-containing water-oxidation catalysts in acidic electrolyte[J].Chinese Journal of Catalysis,2021,42(7):1054-1077. doi:10.1016/s1872-2067(20)63722-6 |
6 | 刘沅昆,张维静,张艳,等 .面向新型电力系统的新能源与储能联合规划方法[J].智慧电力,2022,50(10):1-8. doi:10.3969/j.issn.1673-7598.2022.10.002 |
LIU Y C, ZHANG W J, ZHANG Y,et al .Joint planning method of renewable energy and energy storage for new-type power system[J].Smart Power,2022,50(10):1-8. doi:10.3969/j.issn.1673-7598.2022.10.002 | |
7 | 孙伟卿,罗静,张婕 .高比例风电接入的电力系统储能容量配置及影响因素分析[J].电力系统保护与控制,2021,49(15):9-18. |
ZHANG W Q, LUO J, ZHANG J .Energy storage capacity allocation and influence factor analysis of a power system with a high proportion of wind power[J].Power System Protection and Control,2021,49(15):9-18. | |
8 | 陈晓光,杨秀媛,卜思齐,等 .考虑经济功能性的风电场储能系统容量配置[J].发电技术,2022,43(2):341-352. doi:10.12096/j.2096-4528.pgt.21073 |
CHEN X G, YANG X Y, BU S Q,et al .Capacity allocation of wind farm energy storage system considering economic function[J].Power Generation Technology,2022,43(2):341-352. doi:10.12096/j.2096-4528.pgt.21073 | |
9 | CARMO M, FRITZ D L, MERGEL J,et al .A comprehensive review on PEM water electrolysis[J].International Journal of Hydrogen Energy,2013,38(12):4901-4934. doi:10.1016/j.ijhydene.2013.01.151 |
10 | REIER T, NONG H N, TESCHNER D,et al .Electrocatalytic oxygen evolution reaction in acidic environments:reaction mechanisms and catalysts[J].Advanced Energy Materials,2017,7(1):1601275. doi:10.1002/aenm.201601275 |
11 | 田甜,李怡雪,黄磊,等 .海上风电制氢技术经济性对比分析[J].电力建设,2021,42(12):136-144. |
TIAN T, LI Y X, HUANG L,et al .Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J].Electric Power Construction,2021,42(12):136-144. | |
12 | 顾玖,王晨磊,解大 .电力市场环境下的电-氢一体化站优化运行[J].电力科学与技术学报,2022,37(1):130-139. |
GU J, WANG C L, XIE D .Research on optimal operation of electricity-hydrogen integrated station in electricity market environment[J].Journal of Electric Power Science and Technology,2022,37(1):130-139. | |
13 | 张长云,黄景光,李振兴,等 .极地环境含风氢储混合微电网容量优化配置[J].电力工程技术,2022,41(1):108-116. doi:10.12158/j.2096-3203.2022.01.015 |
ZHANG C Y, HUANG J G, LI Z X,et al .Optimal configuration of wind-hydrogen-storage hybrid microgrid capacity in polar environment[J].Electric Power Engineering Technology,2022,41(1):108-116. doi:10.12158/j.2096-3203.2022.01.015 | |
14 | KOPER M T M .Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis[J].Journal of Electroanalytical Chemistry,2011,660(2):254-260. doi:10.1016/j.jelechem.2010.10.004 |
15 | BO X, DASTAFKAN K, ZHAO C .Design of multi-metallic-based electrocatalysts for enhanced water oxidation[J].ChemPhysChem,2019,20(22):2936-2945. doi:10.1002/cphc.201900507 |
16 | LEI Z, WANG T, ZHAO B,et al .Recent progress in electrocatalysts for acidic water oxidation[J].Advanced Energy Materials,2020,10(23):2000478. doi:10.1002/aenm.202000478 |
17 | SHAN J, ZHENG Y, SHI B,et al .Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J].ACS Energy Letters,2019,4(11):2719-2730. doi:10.1021/acsenergylett.9b01758 |
18 | JIN H,JOO J,N. CHAUDHARI K,et al .Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions[J].ChemElectroChem,2019,6(13):3244-3253. doi:10.1002/celc.201900507 |
19 | MARSHALL A T, SUNDE S, TSYPKIN M,et al .Performance of a PEM water electrolysis cell using Ir x Ru y Ta z O2 electrocatalysts for the oxygen evolution electrode[J].International Journal of Hydrogen Energy,2007,32(13):2320-2324. doi:10.1016/j.ijhydene.2007.02.013 |
20 | OAKTON E, LEBEDEV D, POVIA M,et al .IrO2-TiO2:a high-surface-area,active,and stable electrocatalyst for the oxygen evolution reaction[J].ACS Catalysis,2017,7(4):2346-2352. doi:10.1021/acscatal.6b03246 |
21 | ABBOU S, CHATTOT R, MARTIN V,et al .Manipulating the corrosion resistance of SnO2 aerogels through doping for efficient and durable oxygen evolution reaction electrocatalysis in acidic media[J].ACS Catalysis,2020,10(13):7283-7294. doi:10.1021/acscatal.0c01084 |
22 | GAO J, XU C Q, HUNG S F,et al .Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation[J].Journal of the American Chemical Society,2019,141(7):3014-3023. doi:10.1021/jacs.8b11456 |
23 | JIANG B, KIM J, GUO Y,et al .Efficient oxygen evolution on mesoporous IrO x nanosheets[J].Catalysis Science & Technology,2019,9(14):3697-3702. doi:10.1039/c9cy00302a |
24 | ZHAO R, WANG Z, XU Q,et al .Self-supported amorphous iridium oxide catalysts for highly efficient and durable oxygen evolution reaction in acidic media[J].Electrochimica Acta,2021,391:138955. doi:10.1016/j.electacta.2021.138955 |
25 | DU M, MENG Y, ZHU G,et al .Intrinsic electrocatalytic activity of a single IrO x nanoparticle towards oxygen evolution reaction[J].Nanoscale,2020,12(43):22014-22021. doi:10.1039/d0nr05780k |
26 | LI A, OOKA H, BONNET N,et al .Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J].Angewandte Chemie International Edition,2019,58(15):5054-5058. doi:10.1002/anie.201813361 |
27 | FRYDENDAL R, PAOLI E A, CHORKENDORFF I,et al .Toward an active and stable catalyst for oxygen evolution in acidic media:Ti-stabilized MnO2 [J].Advanced Energy Materials,2015,5(22):1500991. doi:10.1002/aenm.201500991 |
28 | KANG Q, VERNISSE L, REMSING R C,et al .Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction[J].Journal of the American Chemical Society,2017,139(5):1863-1870. doi:10.1021/jacs.6b09184 |
29 | PAN S, LI H, LIU D,et al .Efficient and stable noble-metal-free catalyst for acidic water oxidation[J].Nature Communications,2022,13(1):2294. doi:10.1038/s41467-022-30064-6 |
30 | PASCUZZI M E C, HOFMANN J P, HENSEN E J M .Promoting oxygen evolution of IrO2 in acid electrolyte by Mn[J].Electrochimica Acta,2021,366:137448. doi:10.1016/j.electacta.2020.137448 |
31 | GHADGE S D, VELIKOKHATNYI O I, DATTA M K,et al .Experimental and theoretical validation of high efficiency and robust electrocatalytic response of one-dimensional (1D) (Mn,Ir)O2:10 F nanorods for the oxygen evolution reaction in PEM-based water electrolysis[J].ACS Catalysis,2019,9(3):2134-2157. doi:10.1021/acscatal.8b02901 |
32 | SUN W, ZHOU Z, ZAMAN W Q,et al .Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst[J].ACS Applied Materials & Interfaces,2017,9(48):41855-41862. doi:10.1021/acsami.7b12775 |
33 | HAN H, CHOI H, MHIN S,et al .Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation[J].Energy & Environmental Science,2019,12(8):2443-2454. doi:10.1039/c9ee00950g |
34 | LI G, LI S, GE J,et al .Discontinuously covered IrO2-RuO2@Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure[J].Journal of Materials Chemistry A,2017,5(33):17221-17229. doi:10.1039/c7ta05126c |
35 | HU W, ZHONG H, LIANG W,et al .Ir-surface enriched porous Ir-Co oxide hierarchical architecture for high performance water oxidation in acidic media[J].ACS Applied Materials & Interfaces,2014,6(15):12729-12736. doi:10.1021/am5027192 |
36 | DOSAEV K A, ISTOMIN S Y, ANTIPOV E V .Synthesis and crystal structure of new oxochloride (Mn,Mg)8Cl3O10 [J].Russian Journal of Inorganic Chemistry,2022,67(7):935-939. doi:10.1134/s0036023622070063 |
37 | ZHANG Z, XIANG L, LIN F,et al .Catalytic deep degradation of Cl-VOCs with the assistance of ozone at low temperature over MnO2 catalysts[J].Chemical Engineering Journal,2021,426:130814. doi:10.1016/j.cej.2021.130814 |
38 | 唐海荣 .臭氧耦合催化氧化脱除烟气中NO x 和Cl-VOCs的试验与机理研究[D].杭州:浙江大学,2022. |
TANG H R .Experimental and mechanism investigation on catalytic ozonation for removal of NO x and Cl-VOCs in flue gas[D].Hangzhou:Zhejiang University,2022. | |
39 | LIANG X, HART C, PANG Q,et al .A highly efficient polysulfide mediator for lithium-sulfur batteries[J].Nature Communications,2015,6(1):5682. doi:10.1038/ncomms6682 |
40 | MINGUZZI A, LOCATELLI C, LUGARESI O,et al .Easy accommodation of different oxidation states in iridium oxide nanoparticles with different hydration degree as water oxidation electrocatalysts[J].ACS Catalysis,2015,5(9):5104-5115. doi:10.1021/acscatal.5b01281 |
[1] | Yucheng LIU, Yuan YANG, Yuhao HU, Yuhang LI, Zitai ZHAO, Zhiyong MA, Yuliang DONG. Risk Assessment of Hydrogen Production Station Equipment Based on Event Tree Cascading Fault Deduction and Evidential Reasoning [J]. Power Generation Technology, 2024, 45(1): 42-50. |
[2] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[3] | Lingguo KONG, Jian GONG, Shihui YANG, Defu NI, Shibo WANG, Chuang LIU. Development Status and Trend of DC/DC Isolated Hydrogen Production Power Supply [J]. Power Generation Technology, 2023, 44(4): 443-451. |
[4] | Bofei WANG, Haozhe XIAO, Guohao LI, Wenheng XIU, Yunhao MO, Mingjie ZHU, Zhen WU. A Review of Energy Management Strategy for Hydrogen-Electricity Hybrid Power System Based on Control Target [J]. Power Generation Technology, 2023, 44(4): 452-464. |
[5] | Tianqi SONG, Yunting MA, Zhihui ZHANG. Operation Mode and Economy of Photovoltaic Coupled Water Electrolysis Hydrogen Production System As a Kind of Virtual Power Plant Resource [J]. Power Generation Technology, 2023, 44(4): 465-472. |
[6] | Yu LAN, Yan LONG, Zhehao ZHANG, Jingang RUAN. Technical and Economic Feasibility of Inter-Provincial Supply of Renewable Energy Hydrogen Production [J]. Power Generation Technology, 2023, 44(4): 473-483. |
[7] | Jianlin LI, Chenxi SHAO, Zedong ZHANG, Zhonghao LIANG, Fei ZENG. Analysis of Hydrogen Industry Policy and Commercialization Model [J]. Power Generation Technology, 2023, 44(3): 287-295. |
[8] | Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry [J]. Power Generation Technology, 2023, 44(3): 296-304. |
[9] | Chunyan ZHANG, Zhenlan DOU, Jun WANG, Liangliang ZHU, Xiaotong SUN, Gendi LI. Development Route of Hydrogen Production by Water Electrolysis, Hydrogen Storage and Hydrogen Supply in Power System [J]. Power Generation Technology, 2023, 44(3): 305-317. |
[10] | Yue TENG, Qian ZHAO, Tiejiang YUAN, Guohong CHEN. Key Technology Status and Outlook for Green Electricity-Hydrogen Energy- Multi-domain Applications Coupled Network [J]. Power Generation Technology, 2023, 44(3): 318-330. |
[11] | Lianpeng ZHAO, Zhenyang ZHANG, Gang AN, Shenyin YANG. Progress in Hydrogen Liquefaction Technology With Mixed Refrigerant [J]. Power Generation Technology, 2023, 44(3): 331-339. |
[12] | Lei WU, Liju PENG, Shuang LI, Yixiang SHI, Ningsheng CAI. Simulation and Analysis of Steady State Characteristics of Hundred Kilowatt Proton Exchange Membrane Fuel Cell Combined Heat and Power System Based on Hydrogen Production From Natural Gas [J]. Power Generation Technology, 2023, 44(3): 350-360. |
[13] | Yikun HU, Junwen CAO, Wenqiang ZHANG, Bo YU, Jianchen WANG, Jing CHEN. Application Research Progress of High Temperature Solid Oxide Electrolysis Cell [J]. Power Generation Technology, 2023, 44(3): 361-372. |
[14] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[15] | Lin LI, Tongyu LIU, Shuang LI, Yixiang SHI, Ningsheng CAI. Research Progress of Hydrogen Production by Methanol Reforming for Fuel Cell Power Generation [J]. Power Generation Technology, 2022, 43(1): 44-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||