Power Generation Technology ›› 2023, Vol. 44 ›› Issue (1): 36-43.DOI: 10.12096/j.2096-4528.pgt.22033
• New Energy • Previous Articles Next Articles
Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO
Received:
2022-02-11
Published:
2023-02-28
Online:
2023-03-02
Supported by:
CLC Number:
Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China[J]. Power Generation Technology, 2023, 44(1): 36-43.
1 | 李铮,郭小江,申旭辉,等 .我国海上风电发展关键技术综述[J].发电技术,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 |
LI Z, GUO X J, SHEN X H,et al .Summary of technologies for the development of offshore wind power industry in China[J].Power Generation Technology,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 | |
2 | 朱家宁,张诗钽,葛维春,等 .海上风电外送及电能输送技术综述[J].发电技术,2022,43(2):236-248. doi:10.12096/j.2096-4528.pgt.22025 |
ZHU J N, ZHANG S T, GE W C,et al .Overview of offshore wind power transmission and power transportation technology[J].Power Generation Technology,2022,43(2):236-248. doi:10.12096/j.2096-4528.pgt.22025 | |
3 | 孙瑞娟,梁军,王克文,等 .海上风电集电系统研究综述[J].电力建设,2021,42(6):105-115. doi:10.12204/j.issn.1000-7229.2021.06.011 |
SUN R J, LIANG J, WANG K W,et al .Overview of offshore wind power collection system[J].Electric Power Construction,2021,42(6):105-115. doi:10.12204/j.issn.1000-7229.2021.06.011 | |
4 | 金国彬,杨明城,李国庆,等 .考虑小干扰稳定的海上风电经不控整流直流送出系统控制器参数优化设计[J].电力系统保护与控制,2022,50(21):65-74. |
JIN G B, YANG M C, LI G Q,et al .Optimization design of controller parameters for an offshore wind power DC output system by diode rectifier considering small signal stability[J].Power System Protection and Control,2022,50(21):65-74. | |
5 | 国网能源研究院有限公司 .中国能源电力发展展望2021[M].北京:中国电力出版社,2021:89-108. |
State Grid Energy Research Institute Co.,LTD. .China energy and electric outlook 2021[M].Beijing:China Electric Power Press,2021:89-108. | |
6 | 李丽旻 .海上风机报价暴跌 平价时代来了?[N/OL].中国能源报.(2021-10-24)[2022-01-16].. |
LI L M .Offshore wind turbine quotes plunged by parity era?[N/OL].China Energy News.(2021-10-24) [2022-01-16].. | |
7 | ZHANG L, ZHAO J, ZHANG X W,et al .Integrated fatigue load analysis of wave and wind for offshore wind turbine foundation[C]//International Offshore and Polar Engineering Conference.Beijing:ISOPE,2010:680-686. doi:10.4028/www.scientific.net/kem.419-420.105 |
8 | MANUEL L, SAHASAKKUL W, NGUYEN H,et al .A review of coupling approaches for the dynamic analysis of bottom-supported offshore wind turbines[C]//Offshore Technology Conference.Houston,Texas,USA:OTC,2016:1-9. doi:10.4043/27210-ms |
9 | GLISIC A, NGUYEN N D, SCHAUMANN P .Comparison of integrated and sequential design approaches for fatigue analysis of a jacket offshore wind turbine structure[C]//Proceedings of the 28th International Ocean and Polar Engineering Conference.Sapporo,Japan:ISOPE,2018:440-446. |
10 | VALK V D, PAUL L C,VOORMEEREN,et al .Dynamic models for load calculation procedures of offshore wind turbine support structures:overview,assessment,and outlook[J].Journal of Computational and Nonlinear Dynamics,2015,10(4):13-27. doi:10.1115/1.4028136 |
11 | FISCHER T, VRIES W D, RAINEY R,et al .Offshore support structure optimization by means of integrated design and controls[J].Wind Energy,2012,15(1):99-117. doi:10.1002/we.521 |
12 | LOUKOGEORGAKI E, ANGELIDES D C, LLORENTE C .A numerical tool for the integrated analysis of fixed-bottom offshore wind turbines[C]//Proceedings of the 22nd International Offshore and Polar Engineering Conference.Rhodes,France:ISOPE,2012:347-354. |
13 | HAGHI R, ASHURI T, VAN D,et al .Integrated multidisciplinary constrained optimization of offshore support structures[J].Journal of Physics,2014,555:1-10. doi:10.1088/1742-6596/555/1/012046 |
14 | CHEW K H, MUSKULUS M, ZWICK D,et al .Structural optimization and parametric study of offshore wind turbine jacket substructure[C]//Proceedings of the 23rd International Offshore & Polar Engineering Conference.Anchorage,Alaska:ISOPE,2013:203-210. |
15 | ASHURI T, PONNURANGAM C, ZHANG J,et al .Integrated layout and support structure optimization for offshore wind farm design[J].Journal of Physics Conference Series,2016,753(9):1-13. doi:10.1088/1742-6596/753/9/092011 |
16 | THEO G, WANG L, ATHANASIOS K .Integrated structural optimization of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J].Applied Energy,2017,199(8):187-204. doi:10.1016/j.apenergy.2017.05.009 |
17 | 国际船舶网 .DNV GL提倡海上风电整机结构设计一体化[EB/OL].(2014-07-03)[2022-01-16].. |
18 | 赵向前,黄松苗,赵梓杭 .一体化理念在国内海上风电开发建设上的应用探究[J].南方能源建设,2014,1(1):1-6. |
ZHAO X Q, HUANG S M, ZHAO Z H .Application study of integration concept in domestic offshore wind power construction[J].Southern Energy,2014,1(1):1-6. | |
19 | 翟恩地,张新刚,李荣富 .海上风电机组塔架基础一体化设计[J].南方能源建设,2018,5(2):1-7. |
ZHAI E D, ZHANG X G, LI R F .Integrated design of offshore wind tower and foundation[J].Southern Energy Construction,2018,5(2):1-7. | |
20 | 吴俊辉,刘作辉,李力森,等 .大型海上风力发电机组的载荷分析及载荷优化控制方法[J].电器工业,2018(3):69-71. |
WU J H, LIU Z H, LI L S,et al .Load analysis and load optimization control method of large-scale offshore wind turbine[J].Electrical Appliance Industry,2018(3):69-71. | |
21 | 王宇航,唐浩渊,邹亮,等 .海上风电机组固定式支撑结构环境敏感性分析及极限工况下的一体化设计[J].特种结构,2020,37(5):1-6. |
WANG Y H, TANG H Y, ZOU L,et al .Environmental sensitivity analysis and integrated design of fixed support structure for offshore wind turbine under extreme operating conditions[J].The Special Structure,2020,37(5):1-6. | |
22 | 符鹏程,刘建平,何凯华,等 .海上风电项目“一体化设计”难点分析[J].风能,2020(2):68-69. |
FU P C, LIU J P, HE K H,et al .Analysis of difficulties in “integrated design” of offshore wind power projects[J].Wind Energy,2020(2):68-69. | |
23 | 中国机电工业杂志社 .“千人计划”专家翟恩地:技术驱动降低海上风电支撑结构成本[J].中国机电工业,2018(1):72-74. |
China Machinery & Electric Industry .Zhai Endi,expert of “Thousand Talents Plan”:technology-driven reduction of support structure cost of offshore wind power[J].China Mechanical & Electrical Industry,2018(1):72-74. | |
24 | 曹春潼 .海上风电机组单桩支撑结构和基础设计研究[J].机电设备,2018,35(6):34-39. |
CAO C T .Offshore wind turbine support structure of the single pile and foundation design study[J].Mechanical and Electrical Equipment,2018,35(6):34-39. | |
25 | 田德,陈静,罗涛,等 .基于柔性基础模型的海上风电机组支撑结构优化[J].太阳能学报,2019,40(4):1185-1192. |
TIAN D, CHEN J, LUO T,et al .Optimization of offshore wind turbine support structure based on flexible foundation models[J].Acta Energiae Solaris Sinica,2019,40(4):1185-1192. | |
26 | 林毅峰,李帅,范可,等 .海上风电机组支撑结构与基地基础一体化分析设计[M].机械工业出版社,2020:36-153. |
LIN Y F, LI S, FAN K,et al .Integrated analysis and design of offshore wind turbine support structure and base foundation[M].China Machine Press,2020:136-153. | |
27 | 葛旭,徐业鹏,黄丹 .基于进化策略的海上风电支撑结构多参数同步优化设计[J].可再生能源,2020,38(7):900-904. doi:10.3969/j.issn.1671-5292.2020.07.008 |
GE X, XU Y P, HUANG D .Multi-parameter simultaneously optimal design of support structure for offshore wind turbine based on evolutionary strategy[J].Renewable Energy Resources,2020,38(7):900-904. doi:10.3969/j.issn.1671-5292.2020.07.008 | |
28 | 周昳鸣,李晓勇,陈晓庆 .海上风机支撑结构整体优化设计[J].南方能源建设,2019,6(4):86-92. |
ZHOU Y M, LI X Y, CHEN X Q .Integrated design optimization of offshore support structure[J].Southern Energy Construction,2019,6(4):86-92. | |
29 | 周昳鸣,闫姝,姚中原 .海上风机塔架和单桩一体化试验设计方法[J].南方能源建设,2021,8(4):16-25. |
ZHOU Y M, YAN S, YAO Z Y .Design of experiment for integrated offshore windturbine tower and monopile[J].Southern Energy Construction,2021,8(4):16-25. |
[1] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[2] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[3] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[4] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[5] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[6] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[7] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[8] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
[9] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[10] | Jianing ZHU, Shitan ZHANG, Weichun GE, Chuang LIU, Shuai CHU. Overview of Offshore Wind Power Transmission and Power Transportation Technology [J]. Power Generation Technology, 2022, 43(2): 236-248. |
[11] | Bin XU, Shuai XUE, Houlei GAO, Fang PENG. Development Status and Prospects of Offshore Wind Farms and It’s Key Technology [J]. Power Generation Technology, 2022, 43(2): 227-235. |
[12] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[13] | Zuozhou CHEN, Hao YU, Panpan WANG, Honglin CHEN, Wuhui CHEN. Definition and Influencing Factors of Short-Circuit Ratio Between Offshore Wind Power Cluster and Thermal Power Bundling System [J]. Power Generation Technology, 2022, 43(2): 207-217. |
[14] | Xuelin LI, Ling YUAN. Development Status and Suggestions of Hydrogen Production Technology by Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 198-206. |
[15] | Zheng LI, Xiaojiang GUO, Xuhui SHEN, Haiyan TANG. Summary of Technologies for the Development of Offshore Wind Power Industry in China [J]. Power Generation Technology, 2022, 43(2): 186-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||