Power Generation Technology ›› 2022, Vol. 43 ›› Issue (2): 227-235.DOI: 10.12096/j.2096-4528.pgt.22031
• Offshore Wind Power Generation Technology • Previous Articles Next Articles
Bin XU1, Shuai XUE2, Houlei GAO1, Fang PENG1
Received:
2022-02-10
Published:
2022-04-30
Online:
2022-05-13
Supported by:
CLC Number:
Bin XU, Shuai XUE, Houlei GAO, Fang PENG. Development Status and Prospects of Offshore Wind Farms and It’s Key Technology[J]. Power Generation Technology, 2022, 43(2): 227-235.
大洲 | 国家/地区 | 海上风电场 数量/个 | 风力发电机 数量/台 |
---|---|---|---|
欧洲 | 英国 | 39 | 2 128 |
德国 | 26 | 1 454 | |
丹麦 | 14 | 559 | |
比利时 | 10 | 399 | |
荷兰 | 10 | 538 | |
西班牙 | 4 | 11 | |
瑞典 | 6 | 81 | |
法国 | 2 | 5 | |
芬兰 | 3 | 19 | |
挪威 | 3 | 5 | |
爱尔兰 | 2 | 10 | |
葡萄牙 | 1 | 5 | |
亚洲 | 中国 | 49 | 1 763 |
日本 | 12 | 36 | |
韩国 | 5 | 34 | |
中国台湾 | 2 | 22 | |
越南 | 2 | 62 | |
美洲 | 美国 | 2 | 7 |
Tab. 1 Distribution of global offshore wind farm and wind turbines
大洲 | 国家/地区 | 海上风电场 数量/个 | 风力发电机 数量/台 |
---|---|---|---|
欧洲 | 英国 | 39 | 2 128 |
德国 | 26 | 1 454 | |
丹麦 | 14 | 559 | |
比利时 | 10 | 399 | |
荷兰 | 10 | 538 | |
西班牙 | 4 | 11 | |
瑞典 | 6 | 81 | |
法国 | 2 | 5 | |
芬兰 | 3 | 19 | |
挪威 | 3 | 5 | |
爱尔兰 | 2 | 10 | |
葡萄牙 | 1 | 5 | |
亚洲 | 中国 | 49 | 1 763 |
日本 | 12 | 36 | |
韩国 | 5 | 34 | |
中国台湾 | 2 | 22 | |
越南 | 2 | 62 | |
美洲 | 美国 | 2 | 7 |
基础类型 | 适用深度/m | 平均水深/m | 占比/% | 特点 |
---|---|---|---|---|
重力式基础 | <10 | 9.54 | 4.68 | 结构简单,成本较低,抗风浪性能好;施工周期长,安装不易,对地质条件要求较高 |
单桩基础 | 0~30 | 19.29 | 75.38 | 结构简单,安装难度低,成本低且适应性强;海床较为坚硬时,钻孔难度大,成本较高 |
高桩承台基础 | 0~20 | 6.25 | 6.25 | 造价低,施工可靠方便,适应不同地质条件;桩基相对较长,总体结构偏于厚重 |
三脚桩基础 | 10~30 | 37.63 | 3.28 | 稳定性和可靠性高, 对海床条件要求不高,适用范围大;总质量大,不利于制作和运输 |
导管架基础 | 25~50 | 22.45 | 9.37 | 基础强度高,安装技术成熟,质量轻;需要大量的钢材,制造周期长,成本较高 |
负压桶基础 | 0~25 | 25.18 | 0.62 | 节省钢材,海上施工时间短,可重复利用;沉放、调平难度大 |
浮式基础 | >50 | 74.89 | 0.43 | 成本低,安装灵活,易移动拆卸;基础不稳定,只适用于风浪小的海域 |
Tab. 2 Summary of characteristics of offshore wind turbine foundations
基础类型 | 适用深度/m | 平均水深/m | 占比/% | 特点 |
---|---|---|---|---|
重力式基础 | <10 | 9.54 | 4.68 | 结构简单,成本较低,抗风浪性能好;施工周期长,安装不易,对地质条件要求较高 |
单桩基础 | 0~30 | 19.29 | 75.38 | 结构简单,安装难度低,成本低且适应性强;海床较为坚硬时,钻孔难度大,成本较高 |
高桩承台基础 | 0~20 | 6.25 | 6.25 | 造价低,施工可靠方便,适应不同地质条件;桩基相对较长,总体结构偏于厚重 |
三脚桩基础 | 10~30 | 37.63 | 3.28 | 稳定性和可靠性高, 对海床条件要求不高,适用范围大;总质量大,不利于制作和运输 |
导管架基础 | 25~50 | 22.45 | 9.37 | 基础强度高,安装技术成熟,质量轻;需要大量的钢材,制造周期长,成本较高 |
负压桶基础 | 0~25 | 25.18 | 0.62 | 节省钢材,海上施工时间短,可重复利用;沉放、调平难度大 |
浮式基础 | >50 | 74.89 | 0.43 | 成本低,安装灵活,易移动拆卸;基础不稳定,只适用于风浪小的海域 |
风机容量/MW | 风机数量/台 | 风电场数量/个 |
---|---|---|
(0, 2] | 113 | 18 |
(2, 3] | 745 | 17 |
(3, 4] | 2 366 | 43 |
(4, 5] | 647 | 10 |
(5, 6] | 373 | 5 |
(6, 7] | 623 | 15 |
(7, 8] | 91 | 1 |
(8, 9] | 37 | 3 |
Tab. 3 Number of turbines and wind farms under different turbine capacities
风机容量/MW | 风机数量/台 | 风电场数量/个 |
---|---|---|
(0, 2] | 113 | 18 |
(2, 3] | 745 | 17 |
(3, 4] | 2 366 | 43 |
(4, 5] | 647 | 10 |
(5, 6] | 373 | 5 |
(6, 7] | 623 | 15 |
(7, 8] | 91 | 1 |
(8, 9] | 37 | 3 |
风机类型 | 风机数量占比/% | 平均容量/MW | 最大容量/MW |
---|---|---|---|
鼠笼型 | 41.36 | 3.54 | 4.0 |
双馈型 | 17.08 | 3.46 | 6.2 |
永磁同步型 | 40.38 | 5.38 | 14 |
Tab. 4 Types of offshore wind turbine
风机类型 | 风机数量占比/% | 平均容量/MW | 最大容量/MW |
---|---|---|---|
鼠笼型 | 41.36 | 3.54 | 4.0 |
双馈型 | 17.08 | 3.46 | 6.2 |
永磁同步型 | 40.38 | 5.38 | 14 |
1 | Energy Information Administration US. International energy outlook 2019[EB/OL].(2019-12-15)[2021-12-20].. |
2 | 国家发展改革委 .可再生能源发展“十三五”规划[EB/OL]. (2017-05-16) [2021-01-20]. .National Development and Reform. doi:10.3969/j.issn.1006-1177.2017.01.001 |
Commission . 13th Five-Year Plan for renewable energy development[EB/OL].(2017-05-16) [2021-01- 20]. . doi:10.3969/j.issn.1006-1177.2017.01.001 | |
3 | 董文博,顾秀芳,陈艳宁 .风电并网价值分析[J].发电技术,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 |
DONG W B, GU X F, CHEN Y N,et al .Value analysis of wind power integration[J]. Power Generation Technology,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 | |
4 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
5 | 周强,马彦宏,沈琛云,等 .新时期中国西北地区新能源可持续发展反思与建议[J].电网与清洁能源,2020,36(6):78-84. doi:10.3969/j.issn.1674-3814.2020.06.012 |
ZHOU Q, MA Y H, SHEN C Y,et al .Reflection and suggestions on sustainable development of new energy in northwest china in new era[J].Power System and Clean Energy,2020,36(6):78-84. doi:10.3969/j.issn.1674-3814.2020.06.012 | |
6 | 余浩,肖彭瑶,林勇,等 .大规模海上风电高电压穿越研究进展与展望[J].智慧电力,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 |
YU H, XIAO P Y, LIN Y,et al .Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J].Smart Power,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 | |
7 | 薛帅,高厚磊,郭一飞,等 .大规模海上风电场的双层分布式有功控制[J].电力系统保护与控制,2021,49(3):1-9. doi:10.19783/j.cnki.pspc.200381 |
XUE S, GAO H L, GAO Y F,et al .Bi-level distributed active power control for a large-scale wind farm[J].Power System Protection and Control,2021,49(3):1-9. doi:10.19783/j.cnki.pspc.200381 | |
8 | GWEC. Global offshore wind:annual market report 2020[R].Brussels:Global Wind Energy Council,2020. doi:10.1111/j.1467-6346.2020.09409.x |
9 | 文锋 .我国海上风电现状及分析[J].新能源进展,2016,4(2):152-158. doi:10.3969/j.issn.2095-560X.2016.02.012 |
WEN F .Developments and characteristics of offshore wind farms in China[J].Advances in New and Renewable Enengy,2016,4(2):152-158. doi:10.3969/j.issn.2095-560X.2016.02.012 | |
10 | 国家能源局 .首部海上风力发电场国家标准将实施[EB/OL].(2019-08-21)[2021-01-25]. . doi:10.1016/j.erss.2018.08.019 |
National Energy Board .The national standard of the first offshore wind farm will be implemented[EB/OL].(2019-08-21)[2021-01-25]. . doi:10.1016/j.erss.2018.08.019 | |
11 | 4Offshore C .Global offshore wind farms database[EB/OL].(2021-01-25)[2022-01-12].. |
12 | The Wind Power .Wind energy database[EB/OL](2020-10-15)[2021-12-25].. doi:10.1002/we.1536 |
13 | 财政部,国家发展改革委,国家能源局 .关于促进非水可再生能源发电健康发展的若干意见[EB/OL].(2020-10-12)[2021-01-29].. doi:10.46657/ajresd.2021.3.1 |
Ministry of Finance,National Development and Reform Commission,National Energy Board .Some opinions on promoting the healthy development of non-aqueous renewable energy power generation[EB/OL].(2020-10-12)[2021-01-29].. doi:10.46657/ajresd.2021.3.1 | |
14 | Commission European .A policy framework for climate and energy in the period from 2020 to 2030[R].Brussels:European Commission,2014. |
15 | VOORMOLEN J A, JUNGINGER H M, SARK W VAN .Unravelling historical cost developments of offshore wind energy in Europe[J].Energy Policy,2016,88: 435-444. doi:10.1016/j.enpol.2015.10.047 |
16 | 袁汝华,黄海龙,孙道青,等 .海上风电风机基础结构形式及安装技术研究[J].能源与节能,2018(12): 59-61. doi:10.3969/j.issn.2095-0802.2018.12.024 |
YUAN R H, HUANG H L, SUN D Q,et al .Research on basic structure and installation technology of offshore wind turbine[J].Energy and Conservation,2018(12): 59-61. doi:10.3969/j.issn.2095-0802.2018.12.024 | |
17 | 刘晓辉,高人杰,薛宇 .浮式风力发电机组现状及发展趋势综述[J].分布式能源,2020,5(3):39-46. doi:10.16513/j.2096-2185.DE.2004007 |
LIU X H, GAO R J, XUE Y,et al .Current situation and future development trend of floating offshore wind turbine[J].Distributed Energy,2020,5(3):39-46. doi:10.16513/j.2096-2185.DE.2004007 | |
18 | 徐荣彬 .海上风电场风机基础结构形式探讨[J].建材技术与应用,2011(7):7-9. doi:10.3969/j.issn.1009-9441.2011.07.003 |
XU R B .On fan infrastructure form of wind power station at sea[J].Research & Application of Building Materials,2011(7):7-9. doi:10.3969/j.issn.1009-9441.2011.07.003 | |
19 | 张浩,迟洪明 .海上风力发电基础形式及趋势[J].中国高新技术企业,2014(20):76-78. doi:10.3969/j.issn.1009-2374.2014.07.037 |
ZHANG H, CHI H M .The basic and trend of offshore wind power generation[J].China High-Tech Enterprises,2014(20):76-78. doi:10.3969/j.issn.1009-2374.2014.07.037 | |
20 | SETHURAMAN L, MANESS M, DYKES K .Optimized generator designs for the DTU 10 MW offshore wind turbine using generator SE[C]//35th Wind Energy Symposium.Grapevine,USA:ASME,2017:922-931. doi:10.2514/6.2017-0922 |
21 | 张文元,车向中,刘金晶,等 .基于自然坐标的鼠笼异步发电机控制策略研究[J].电气传动,2020,50(11):65-71. doi:10.19457/j.1001-2095.dqcd19864 |
ZHANG W Y, CHE X Z, LIU J J,et al .Research on control strategy of squirrel cage induction generator based on natural coordinate[J].Electric Drive,2020,50(11):65-71. doi:10.19457/j.1001-2095.dqcd19864 | |
22 | 杨晨星,杨旭,童朝南 .双馈异步风力发电机低电压穿越的软撬棒控制[J].中国电机工程学报,2018, 38(8):2487-2495. doi:10.1109/cac.2018.8623209 |
YANG C X, YANG X, TONG C N .An LVRT control strategy based on soft crowbar control for doubly fed induction wind power generations[J].Proceedings of the CSEE, 2018, 38(8):2487-2495. doi:10.1109/cac.2018.8623209 | |
23 | BADR M A, ATALLAH A M, BAYOUMI M A .Comparison between aggregation techniques for PMSG wind farm[J].Energy Procedia,2015,74:1162-1173. doi:10.1016/j.egypro.2015.07.759 |
24 | 陈宁,曹家麟 .大型海上风电场集电系统优化研究[D].上海:上海电力学院,2011. |
CHEN N, CAO J L .Research on optimization of large offshore wind farm collector system[D].Shanghai:Shanghai University of Electric Power,2011. | |
25 | ZHAO M, CHEN Z, BLAABJERG F .Optimisation of electrical system for offshore wind farms via genetic algorithm[J].IET Renewable Power Generation,2009,3(2):205-216. doi:10.1049/iet-rpg:20070112 |
26 | CHEN Z, ZHAO M, BLAABJERG F .Application of genetic algorithm in electrical system optimization for offshore wind farms[C]//Proceedings of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.Nanjing,China:IEEE,2008:128-135. doi:10.1049/iet-rpg:20070112 |
27 | ZHAO M, CHEN Z, HJERRILD J .Analysis of the behaviour of genetic algorithm applied in optimization of electrical system design for offshore wind farms[C]//IECON 2006-32nd Annual Conference on IEEE Industrial Electronics.Paris,France:IEEE,2006:2335-2340. doi:10.1109/iecon.2006.347333 |
28 | YANG J, O’REILLY J, FLETCHER J E .Redundancy analysis of offshore wind farm collection and transmission systems[C]//2009 International Conference on Sustainable Power Generation and Supply.Nanjing,China:IEEE,2009:1-7. doi:10.1109/supergen.2009.5348163 |
29 | 迟永宁, 梁伟, 张占奎,等 .大规模海上风电输电与并网关键技术研究综述[J].中国电机工程学报,2016,36(14):3758-3771. doi:10.13334/j.0258-8013.pcsee.152756 |
CHI Y N, LIANG W, ZHANG Z K,et al .An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J].Proceedings of the CSEE,2016,36(14):3758-3771. doi:10.13334/j.0258-8013.pcsee.152756 | |
30 | 汤英杰,张哲任,徐政 .基于二极管不控整流单元的远海风电低频交流送出方案[J].中国电力,2020,53(7):44-54. |
TANG Y J, ZHANG Z R, XU Z .Diode rectifier unit based LFAC transmission for offshore wind farm integration[J].Electric Power,2020,53(7):44-54. | |
31 | ALAGAB S M, TENNAKOON S B, GOULD C A .A compact DC-DC converter for offshore wind farm application[J].Renewable Energy and Power Quality,2017,1(15) :529-533. doi:10.24084/repqj15.382 |
32 | TORRES-OLGUIN R E, MOLINAS M, UNDELAND T .Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission[J].IEEE Transactions on Sustainable Energy,2012,3(4):899-907. doi:10.1109/tste.2012.2200511 |
33 | BERNAL-PEREZ S, ANO-VILLALBA S, BLASCO-GIMENEZ R, et al .Efficiency and fault ride-through performance of a diode- rectifier- and VSC-inverter-based HVDC link for offshore wind farms[J].IEEE Transactions on Industrial Electronics,2013,60(6):2401-2409. doi:10.1109/tie.2012.2222855 |
[1] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[2] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[3] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[4] | Yu LAN, Yan LONG, Zhehao ZHANG, Jingang RUAN. Technical and Economic Feasibility of Inter-Provincial Supply of Renewable Energy Hydrogen Production [J]. Power Generation Technology, 2023, 44(4): 473-483. |
[5] | Shaoxin WEI, Ying JIN, Jin WANG, Zhoufei YANG, Chaojie CUI, Weizhong QIAN. Prospect for Development Trend of Battery-Capacitor Technology [J]. Power Generation Technology, 2022, 43(5): 748-759. |
[6] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[7] | Xuelin LI, Ling YUAN. Development Status and Suggestions of Hydrogen Production Technology by Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 198-206. |
[8] | Fang FANG, Dongyang LIANG, Yajuan LIU, Yang HU, Jizhen LIU. Key Technologies for Intelligent Control and Operation and Maintenance of Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 175-185. |
[9] | Dandan WANG, Yalou LI, Fang LI, Lu SUN. Process Modelling and Thermodynamic Analysis of Hydrogen Production by High Temperature Solid Oxide Electrolysis Under the Background of Carbon Neutrality [J]. Power Generation Technology, 2021, 42(5): 554-560. |
[10] | Wenbo XUAN, Hui LI, Zhongyi LIU, Yeguang SUN, Kai HOU. A Method for Improving the Accommodating Capability of Urban Renewable Energy Based on Virtual Power Plant Technology [J]. Power Generation Technology, 2021, 42(3): 289-297. |
[11] | Chao LEI, Tao LI. Key Technologies and Development Status of Hydrogen Energy Utilization Under the Background of Carbon Neutrality [J]. Power Generation Technology, 2021, 42(2): 207-217. |
[12] | Rui MA, Xiangjun LI, Wenqi LI, Dongxue GAO, Jingchao ZHANG, Ningxi SONG. Cooperative Scheduling Strategy of Energy Storage Systems for Regional Grid Supplied by Renewable Energy [J]. Power Generation Technology, 2021, 42(1): 31-39. |
[13] | Xin GAO, Fei TANG, Tongyan ZHANG, Yu LI. Optimal Decision-making Method of Wind-proof and Disaster-resistant Reinforcement Measures for Distribution Network [J]. Power Generation Technology, 2021, 42(1): 78-85. |
[14] | Jiaxin WEN, Siqi BU, Qiyu CHEN, Bowen ZHOU. Data Learning-based Frequency Risk Assessment in a High-penetrated Renewable Power System [J]. Power Generation Technology, 2021, 42(1): 40-47. |
[15] | Yan WANG, Xiuyuan YANG, Jianfeng XU, Siqi BU, Zhiqiang XU. Control Strategy of Civil Controllable Load Participating in Demand Response [J]. Power Generation Technology, 2020, 41(6): 638-649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||