Power Generation Technology ›› 2022, Vol. 43 ›› Issue (6): 869-879.DOI: 10.12096/j.2096-4528.pgt.22095
• New Energy • Previous Articles Next Articles
Hui DONG1, Weichun GE2, Shitan ZHANG1, Chuang LIU1, Shuai CHU3
Received:
2022-05-30
Published:
2022-12-31
Online:
2023-01-03
Supported by:
CLC Number:
Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy[J]. Power Generation Technology, 2022, 43(6): 869-879.
项目 | 能源输送形式 | ||||||
---|---|---|---|---|---|---|---|
电能输送方式 | 氢气输送方式 | ||||||
高压交流输电 | 高压直流输电 | 柔性直流输电 | 高压气态输氢 | 低温液态输氢 | 管道输氢 | ||
主要设备 | 海上升压站、无功补偿设备、陆上变电站等 | 海上升压站、海上换流站、滤波装置、陆上换流站等 | 海上升压站、海上换流站、陆上换流站等 | 电解水设备、高压泵/氢气压缩机、储氢罐等 | 电解水设备、氢气液化机、储氢罐等 | 电解水设备、高压泵等 | |
运输通路 | 交流海底电缆 | 直流海底电缆 | 直流海底电缆 | 轮船 | 轮船 | 输氢管道 | |
能量运输成本 | 887万元/km | 550万元/km | 550万元/km | 百千米2.02元/kg | 百千米12.25元/kg | 百千米0.3元/kg | |
维护情况 | 维护检修成本高,易造成生态破坏 | 年检修时间通常小于1% | 年检修时间通常小于0.5% | 需常检测储氢罐的密闭性 | 需保证储氢罐的保温箱 | 检修次数少,检修成本较高 | |
海上平台规模 | 最小 | 最大 | 中等 | 小 | 小 | 小 | |
典型输送容量 | 400 MW(220 kV); 800 MW(400 kV) | >1 200 MW | 350~1 000 MW | 460 kg/次 | 170 t/次 | 11 t/h | |
典型输送距离 | 离岸100 km | >100 km | >100 km | <150 km | >500 km | >500 km | |
技术成熟度 | 高 | 高 | 较低 | 高 | 较低 | 低 | |
工程应用情况 | 近海风电场 | 无示范工程 | 远海大功率风电场 | 中短距离运输 | 远距离运输,国外应用较多 | 远距离运输,国外应用较多 |
Tab. 1 Comparison of performance indicators of various conveying methods
项目 | 能源输送形式 | ||||||
---|---|---|---|---|---|---|---|
电能输送方式 | 氢气输送方式 | ||||||
高压交流输电 | 高压直流输电 | 柔性直流输电 | 高压气态输氢 | 低温液态输氢 | 管道输氢 | ||
主要设备 | 海上升压站、无功补偿设备、陆上变电站等 | 海上升压站、海上换流站、滤波装置、陆上换流站等 | 海上升压站、海上换流站、陆上换流站等 | 电解水设备、高压泵/氢气压缩机、储氢罐等 | 电解水设备、氢气液化机、储氢罐等 | 电解水设备、高压泵等 | |
运输通路 | 交流海底电缆 | 直流海底电缆 | 直流海底电缆 | 轮船 | 轮船 | 输氢管道 | |
能量运输成本 | 887万元/km | 550万元/km | 550万元/km | 百千米2.02元/kg | 百千米12.25元/kg | 百千米0.3元/kg | |
维护情况 | 维护检修成本高,易造成生态破坏 | 年检修时间通常小于1% | 年检修时间通常小于0.5% | 需常检测储氢罐的密闭性 | 需保证储氢罐的保温箱 | 检修次数少,检修成本较高 | |
海上平台规模 | 最小 | 最大 | 中等 | 小 | 小 | 小 | |
典型输送容量 | 400 MW(220 kV); 800 MW(400 kV) | >1 200 MW | 350~1 000 MW | 460 kg/次 | 170 t/次 | 11 t/h | |
典型输送距离 | 离岸100 km | >100 km | >100 km | <150 km | >500 km | >500 km | |
技术成熟度 | 高 | 高 | 较低 | 高 | 较低 | 低 | |
工程应用情况 | 近海风电场 | 无示范工程 | 远海大功率风电场 | 中短距离运输 | 远距离运输,国外应用较多 | 远距离运输,国外应用较多 |
项目 | 高压交流输电 | 高压直流输电 | 柔性直流输电 | 3种输氢方式 |
---|---|---|---|---|
主要设备成本 | 72 | 300 | 322 | 80 |
安装成本 | 38 | 77 | 77 | 28 |
总成本 | 110 | 377 | 399 | 108 |
Tab. 2 Investment cost of electric equipments
项目 | 高压交流输电 | 高压直流输电 | 柔性直流输电 | 3种输氢方式 |
---|---|---|---|---|
主要设备成本 | 72 | 300 | 322 | 80 |
安装成本 | 38 | 77 | 77 | 28 |
总成本 | 110 | 377 | 399 | 108 |
项目 | 起点 | 终点 | 输送距离/km | 输送能力 | 总投资 成本/亿元 |
---|---|---|---|---|---|
西气东输二线 | 霍尔果斯 | 广州 | 49 788 | 300亿m3 | 1 420 |
济源-洛阳输氢管道 | 济源 | 洛阳 | 25 | 10.05万t | 1.54 |
巴陵-长陵输氢管道 | 巴陵 | 长陵 | 43 | 5万t | 1.96 |
Tab. 3 Overview of large gas transmission pipelines
项目 | 起点 | 终点 | 输送距离/km | 输送能力 | 总投资 成本/亿元 |
---|---|---|---|---|---|
西气东输二线 | 霍尔果斯 | 广州 | 49 788 | 300亿m3 | 1 420 |
济源-洛阳输氢管道 | 济源 | 洛阳 | 25 | 10.05万t | 1.54 |
巴陵-长陵输氢管道 | 巴陵 | 长陵 | 43 | 5万t | 1.96 |
1 | 周远翔,陈健宁,张灵,等 .“双碳”与“新基建”背景下特高压输电技术的发展机遇[J].高电压技术,2021,47(7):2396-2408. |
ZHOU Y X, CHEN J N, ZHANG L,et al .Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J].High Voltage Engineering,2021,47(7):2396-2408. | |
2 | 黄强,郭怿,江建华,等 .“双碳”目标下中国清洁电力发展路径[J].上海交通大学学报,2021,55(12):1499-1509. |
HUANG Q, GUO Y, JIANG J H,et al .Development pathway of China's clean electricity under carbon peaking and carbon neutrality goals[J].Journal of Shanghai Jiaotong University,2021,55(12):1499-1509. | |
3 | 唐婧怡,楚帅,葛维春,等 .电极式电制热与传统制热的差异及其在碳中和的应用前景[J].发电技术,2021,42(5):525-536. doi:10.12096/j.2096-4528.pgt.21069 |
TANG J Y, CHU S, GE W C,et al .Difference between electrode electric heating and traditional heating and its application prospect in carbon neutrality[J].Power Generation Technology,2021,42(5):525-536. doi:10.12096/j.2096-4528.pgt.21069 | |
4 | 朱黎 .海上风电为可再生能源发展的新领域[J].新能源科技,2021(12):2-3. doi:10.3969/j.issn.2096-8809.2021.12.002 |
ZHU L .Offshore wind power as a new area of renewable energy development[J].New Energy Technology,2021(12):2-3. doi:10.3969/j.issn.2096-8809.2021.12.002 | |
5 | HUGO D, SOARES C G .Review of the current status,technology and future trends of offshore wind farms[J].Ocean Engineering,2020,209:107381.1-107381.21. |
6 | 马晋龙,孙勇,叶学顺 .欧洲海上风电规划机制和激励策略及其启示[J].中国电力,2022,55(4):1-11. |
MA J L, SUN Y, YE X S .European offshore wind power planning mechanism and incentive strategies and its enlightenment[J].Electric Power,2022,55(4):1-11. | |
7 | 姚钢,杨浩猛,周荔丹,等 .大容量海上风电机组发展现状及关键技术[J].电力系统自动化,2021,45(21):33-47. doi:10.7500/AEPS20210416003 |
YAO G, YANG H M, ZHOU L D,et al .Development status and key technologies of large-capacity offshore wind turbines[J].Automation of Electric Power Systems,2021,45(21):33-47. doi:10.7500/AEPS20210416003 | |
8 | 蔡旭,杨仁炘,周剑桥,等 .海上风电直流送出与并网技术综述[J].电力系统自动化,2021,45(21):2-22. doi:10.7500/AEPS20210909007 |
CAI X, YANG R X, ZHOU J Q,et al .Review on offshore wind power integration via DC transmission[J].Automation of Electric Power Systems,2021,45(21):2-22. doi:10.7500/AEPS20210909007 | |
9 | 罗红梅,申旭辉,董立,等 .采用交流海缆接入的海上风电场无功配置方法[J].电力电容器与无功补偿,2021,42(6):1-10. |
LUO H M, SHEN X H, DONG L,et al .Reactive power configuration method of offshore wind power with access of AC submarine cable[J].Power Capacitor & Reactive Power Compensation,2021,42(6):1-10. | |
10 | 张占奎,石文辉,屈姬贤,等 .大规模海上风电并网送出策略研究[J].中国工程科学,2021,23(4):182-190. doi:10.15302/j-sscae-2021.04.021 |
ZHANG Z K, SHI W H, QU J X,et al .Grid connection and transmission scheme of large-scale offshore wind power[J].Strategic Study of CAE,2021,23(4):182-190. doi:10.15302/j-sscae-2021.04.021 | |
11 | 沙志成,张丹,赵龙 .大规模海上风电并网方式的研究[J].电力与能源,2017,38(2):158-161. doi:10.11973/dlyny201702014 |
SHA Z C, ZHANG D, ZHAO L .Grid integration models of large-scale off-shore wind farm[J].Power & Energy,2017,38(2):158-161. doi:10.11973/dlyny201702014 | |
12 | 郑明,王长虹 .海上风电场输电方式研究[J].南方能源建设,2018,5(2):99-108. |
ZHENG M, WANG C H .Research on the transmission mode of offshore wind farm[J].Southern Energy Construction,2018,5(2):99-108. | |
13 | 王鑫,王海云,王维庆 .大规模海上风电场电力输送方式研究[J].电测与仪表,2020,57(22):55-62. |
WANG X, WANG H Y, WANG W Q .Research on power transmission mode of large-scale offshore wind farms[J].Electrical Measurement & Instrumentation,2020,57(22):55-62. | |
14 | 黄明煌,王秀丽,刘沈全,等 .分频输电应用于深远海风电并网的技术经济性分析[J].电力系统自动化,2019,43(5):167-174. |
HUANG M H, WANG X L, LIU S Q,et al .Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J].Automation of Electric Power Systems,2019,43(5):167-174. | |
15 | 顾为东 .大规模海上风电的非并网多元化应用研究—变海上风电场输电上岸为直接输产品上岸的探索[J].中国工程科学,2010,12(11):78-82. |
GU W D .Research on the non-grid-connected diverse application of large-scale offshore wind power- exploration on changing offshore wind power transmission into product transmission ashore[J].Strategic Study of CAE,2010,12(11):78-82. | |
16 | 楚帅,董辉,葛维春,等 .海水淡化负荷消纳弃风电量的集群优化调度策略[J].高电压技术,2021,47(9):3085-3095. |
CHU S, DONG H, GE W C,et al .Cluster optimal dispatch strategy for seawater desalination using abandoned wind power[J].High Voltage Engineering,2021,47(9):3085-3095. | |
17 | 方世杰,邵志芳,张存满 .并网型风电耦合制氢系统经济性分析[J].能源技术经济,2012,24(3):39-43. |
FANG S J, SHAO Z F, ZHANG C M .Economic analysis on on-grid wind power coupling with hydrogen-production system[J].Electric Power Technologic Economics,2012,24(3):39-43. | |
18 | 王秀丽,赵勃扬,郑伊俊,等 .海上风力发电及送出技术与就地制氢的发展概述[J].浙江电力,2021,40(10):3-12. |
WANG X L, ZHAO B Y, ZHENG Y J,et al .A general survey of offshore wind power generation and transmission technologies and local hydrogen production [J].Zhejiang Electric Power,2021,40(10):3-12. | |
19 | 邱玥,周苏洋,顾伟,等 .“碳达峰、碳中和”目标下混氢天然气技术应用前景分析[J].中国电机工程学报,2022,42(4):1301-1321. |
QIU Y, ZHOU S Y, GU W,et al .Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality[J].Proceedings of the CSEE,2022,42(4):1301-1321. | |
20 | 肖浩庆 .适用于大规模海上风电的并网技术分析[J].电力设备管理,2019(9):76-78. |
XIAO H Q .Analysis of grid-connected technology suitable for large-scale offshore wind power[J].Electric Power Equipment Management,2019(9):76-78. | |
21 | 彭穗,余浩,许亮,等 .海上风电场输电方式研究[J].电力勘测设计,2021(11):68-75. |
PENG S, YU H, XU L,et al .Research on power transmission scheme for offshore wind farms[J].Electric Power Survey & Design,2021(11):68-75. | |
22 | 张开华,张智伟,王婧倩,等 .海上风电场输电系统选择[J].太阳能,2019(2):56-60. doi:10.3969/j.issn.1003-0417.2019.02.012 |
ZHANG K H, ZHANG Z W, WANG J Q,et al .Transmission system selection for offshore wind farms[J].Solar Energy,2019(2):56-60. doi:10.3969/j.issn.1003-0417.2019.02.012 | |
23 | 陈堃,宋宇,代维谦,等 .高压直流输电技术发展及其工程应用[J].湖北电力,2018,42(4):1-6. |
CHEN K, SONG Y, DAI W Q,et al .Development and engineering application of HVDC transmission technology[J].Hubei Electric Power,2018,42(4):1-6. | |
24 | 吴明哲,陈武晖 .VSC-HVDC稳定控制研究[J].发电技术,2019,40(1):28-39. doi:10.12096/j.2096-4528.pgt.18199 |
WU M Z, CHEN W H .Overview of research on stability and control of VSC-HVDC[J].Power Generation Technology,2019,40(1):28-39. doi:10.12096/j.2096-4528.pgt.18199 | |
25 | 徐进,金逸,胡从川,等 .适用于海上风电并网的多端柔性直流系统自适应下垂控制研究[J].电力系统保护与控制,2018,46(4):78-85. doi:10.7667/PSPC170187 |
XU J, JIN Y, HU C C,et al .DC voltage adaptive droop control of multi-terminal VSC-HVDC system for offshore wind farms integration[J].Power System Protection and Control,2018,46(4):78-85. doi:10.7667/PSPC170187 | |
26 | CLEGG S, MANCARELLA P .Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks[J].IEEE Transactions on Sustainable Energy,2015,6(4):1234-1244. doi:10.1109/tste.2015.2424885 |
27 | KHANI H, FARAG H .Optimal day-ahead scheduling of power-to-gas energy storage and gas load management in wholesale electricity and gas markets[J].IEEE Transactions on Sustainable Energy,2017,9(2):940-951. |
28 | 李雪松,随权,林湘宁,等 .一种兼顾富余风电充分消纳和全局效益的电网灵活负荷控制策略[J].中国电机工程学报,2020,40(18):5885-5897. |
LI X S, SUI Q, LIN X N,et al .A flexible load control strategy for power grid considering fully consumption of surplus wind power and global benefits[J].Proceedings of the CSEE,2020,40(18):5885-5897. | |
29 | 孔令国,蔡国伟,李龙飞,等 .风光氢综合能源系统在线能量调控策略与实验平台搭建[J].电工技术学报,2018,33(14):3371-3384. |
KONG L G, CAI G W, LI L F,et al .Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J].Transactions of China Electrotechnical Society,2018,33(14):3371-3384. | |
30 | 雷超,李韬 .碳中和背景下氢能利用关键技术及发展现状[J].发电技术,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 |
LEI C, LI T .Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J].Power Generation Technology,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 | |
31 | HE G, MALLAPRAGADA D S, BOSE A,et al .Hydrogen supply chain planning with flexible transmission and storage scheduling[J].IEEE Transactions on Sustainable Energy,2021,12(3):1730-1740. doi:10.1109/tste.2021.3064015 |
32 | CALADO G, RUI C .Hydrogen production from offshore wind parks: current situation and future perspectives[J].Applied Sciences,2021,11(12):5561. doi:10.3390/app11125561 |
33 | 田甜,李怡雪,黄磊,等 .海上风电制氢技术经济性对比分析[J].电力建设,2021,42(12):136-144. |
TIAN T, LI Y X, HUANG L,et al .Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J].Electric Power Construction,2021,42(12):136-144. | |
34 | 李飞飞,王亮,齐立忠,等 .海上风电典型送出方案技术经济比较研究[J].电网与清洁能源,2014,30(11):140-144. doi:10.3969/j.issn.1674-3814.2014.11.028 |
LI F F, WANG L, QI L Z,et al .Technical and economical comparisons of typical transmission schemes of the offshore wind farm[J].Power System and Clean Energy,2014,30(11):140-144. doi:10.3969/j.issn.1674-3814.2014.11.028 | |
35 | 王恒 .氢能发展模式应用[J].农村电气化,2021(5):65-69. |
WANG H .Application of hydrogen energy development model[J].Rural Electrification,2021(5):65-69. | |
36 | EECKHOUT B V, HERTEM D V, REZA M,et al .Economic comparison of VSC HVDC and HVAC as transmission system for a 300 MW offshore wind farm[J].International Transactions on Electrical Energy Systems,2010,20(5):661-671. |
37 | 赵雪莹,李根蒂,孙晓彤,等 .“双碳”目标下电解制氢关键技术及其应用进展[J].全球能源互联网,2021,4(5):436-446. doi:10.19705/j.cnki.issn2096-5125.2021.05.003 |
ZHAO X Y, LI G D, SUN X T,et al .Key technology and application progress of hydrogen production by electrolysis under peaking carbon dioxide emissions and carbon neutrality targets[J].Journal of Global Energy Interconnection,2021,4(5):436-446. doi:10.19705/j.cnki.issn2096-5125.2021.05.003 | |
38 | 徐硕,余碧莹 .中国氢能技术发展现状与未来展望[J].北京理工大学学报(社会科学版),2021,23(6):1-12. |
XU S, YU B Y .Current development and prospect of hydrogen energy technology in China[J].Journal of Beijing Institute of Technology (Social Sciences Edition),2021,23(6):1-12. | |
39 | 宋鹏飞,单彤文,李又武,等 .天然气管道掺入氢气的影响及技术可行性分析[J].现代化工,2020,40(7):5-10. |
SONG P F, SHAN T W, LI Y W,et al .Impact of hydrogen into natural gas grid and technical feasibility analysis[J].Modern Chemical Industry,2020,40(7):5-10. | |
40 | 丁剑,方晓松,宋云亭,等 .碳中和背景下西部新能源传输的电氢综合能源网构想[J].电力系统自动化,2021,45(24):1-9. |
DING J, FANG X S, SONG Y T,et al .Conception of electricity and hydrogen integrated energy network for renewable energy transmission in western China under background of carbon neutralization[J].Automation of Electric Power Systems,2021,45(24):1-9. | |
41 | 吴瑾,焦文强,田倩,等 .海洋氢能发展现状综述[J].科技风,2021(19):129-131. |
WU J, JIAO W Q, TIAN Q,et al .A review of the development status of marine hydrogen energy[J].Technology Wind,2021(19):129-131. | |
42 | 刘海军 .万亿氢能产业,化工能分多大蛋糕?[J].中国石油和化工,2020(7):4. |
LIU H J .How big of a cake can the chemical industry share in the trillion-dollar hydrogen energy industry? [J].China Petroleum and Chemical Industry,2020(7):4. |
[1] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[2] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[3] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[4] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[5] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[6] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
[7] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[8] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
[9] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[10] | Jianing ZHU, Shitan ZHANG, Weichun GE, Chuang LIU, Shuai CHU. Overview of Offshore Wind Power Transmission and Power Transportation Technology [J]. Power Generation Technology, 2022, 43(2): 236-248. |
[11] | Bin XU, Shuai XUE, Houlei GAO, Fang PENG. Development Status and Prospects of Offshore Wind Farms and It’s Key Technology [J]. Power Generation Technology, 2022, 43(2): 227-235. |
[12] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[13] | Zuozhou CHEN, Hao YU, Panpan WANG, Honglin CHEN, Wuhui CHEN. Definition and Influencing Factors of Short-Circuit Ratio Between Offshore Wind Power Cluster and Thermal Power Bundling System [J]. Power Generation Technology, 2022, 43(2): 207-217. |
[14] | Xuelin LI, Ling YUAN. Development Status and Suggestions of Hydrogen Production Technology by Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 198-206. |
[15] | Zheng LI, Xiaojiang GUO, Xuhui SHEN, Haiyan TANG. Summary of Technologies for the Development of Offshore Wind Power Industry in China [J]. Power Generation Technology, 2022, 43(2): 186-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||