Power Generation Technology ›› 2022, Vol. 43 ›› Issue (3): 373-391.DOI: 10.12096/j.2096-4528.pgt.22052
• Intelligent Energy • Next Articles
Yingfeng LI1, Tao ZHANG2, Heng ZHANG1, Peng CUI1, Zaiguo FU2, Zhongliang GAO1, Qi GENG1, Zhihan LIU1, Qunzhi ZHU2, Hexing LI2, Meicheng LI1
Received:
2022-03-07
Published:
2022-06-30
Online:
2022-07-06
Supported by:
CLC Number:
Yingfeng LI, Tao ZHANG, Heng ZHANG, Peng CUI, Zaiguo FU, Zhongliang GAO, Qi GENG, Zhihan LIU, Qunzhi ZHU, Hexing LI, Meicheng LI. Efficient and Comprehensive Photovoltaic/Photothermal Utilization Technologies for Solar Energy[J]. Power Generation Technology, 2022, 43(3): 373-391.
参数 | 槽式 | 塔式 | 碟式 | 线性菲涅尔式 |
---|---|---|---|---|
规模/MW | 10~350 | 10~150 | 0.01~1 | 10~320 |
成熟度 | 商业化 | 商业化 | 示范 | 示范 |
聚光方式 | 线聚焦 | 点聚焦 | 点聚焦 | 线聚焦 |
跟踪方式 | 单轴追踪 | 双轴追踪 | 双轴追踪 | 单轴追踪 |
聚光比 | 10~100 | 300~1 500 | 1 000~3 000 | 35~170 |
传热介质 | 水/蒸汽、熔盐、导热油、空气 | 水/蒸汽、熔盐 | 氢、熔盐 | 水/蒸汽、熔盐 |
运行温度/℃ | 150~550 | 300~1 200 | 300~1 500 | 150~400 |
峰值效率/% | 21 | 23 | 29.4 | 20 |
热发电效率/% | 10~16 | 10~22 | 16~29 | 8~12 |
单位造价/(美元/W) | 2.7~4.0 | 2.5~4.4 | 1.3~12.6 | 5.4 |
发电成本/[美元/(kW∙h)] | 0.13~0.26 | 0.08~0.16 | 0.25 | 0.28 |
Tab. 1 Comparison of four photothermal power generation technologies
参数 | 槽式 | 塔式 | 碟式 | 线性菲涅尔式 |
---|---|---|---|---|
规模/MW | 10~350 | 10~150 | 0.01~1 | 10~320 |
成熟度 | 商业化 | 商业化 | 示范 | 示范 |
聚光方式 | 线聚焦 | 点聚焦 | 点聚焦 | 线聚焦 |
跟踪方式 | 单轴追踪 | 双轴追踪 | 双轴追踪 | 单轴追踪 |
聚光比 | 10~100 | 300~1 500 | 1 000~3 000 | 35~170 |
传热介质 | 水/蒸汽、熔盐、导热油、空气 | 水/蒸汽、熔盐 | 氢、熔盐 | 水/蒸汽、熔盐 |
运行温度/℃ | 150~550 | 300~1 200 | 300~1 500 | 150~400 |
峰值效率/% | 21 | 23 | 29.4 | 20 |
热发电效率/% | 10~16 | 10~22 | 16~29 | 8~12 |
单位造价/(美元/W) | 2.7~4.0 | 2.5~4.4 | 1.3~12.6 | 5.4 |
发电成本/[美元/(kW∙h)] | 0.13~0.26 | 0.08~0.16 | 0.25 | 0.28 |
1 | 杨金焕 .太阳能光伏发电应用技术[M].3 版.北京:电子工业出版社,2017:304. |
YANG J H .Solar photovoltaic power generation application technology[M].3rd ed.Beijing:Publishing House of Electronics Industry,2017:304. | |
2 | LI M Q, VIRGUEZ E, SHAN R,et al .High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system[J].Applied Energy,2022,306:117996. doi:10.1016/j.apenergy.2021.117996 |
3 | ZHANG Y H, REN J, PU Y R,et al .Solar energy potential assessment: a framework to integrate geographic,technological, and economic indices for a potential analysis[J].Renewable Energy,2020,149:577-586. doi:10.1016/j.renene.2019.12.071 |
4 | DNV GL .能源转型展望2018[EB/OL].(2018-09-10)[2022-02-25].. doi:10.3940/rina.ees.2015.05 |
DNV GL .Energy transition outlook 2018[EB/OL].(2018-09-10)[2022-02-25].. doi:10.3940/rina.ees.2015.05 | |
5 | International Energy Agency .World energy outlook 2018[R].Paries:IEA,2018. doi:10.1787/weo-2018-en |
6 | 黄华瑞,赵霄 .太阳能光热利用浅析[J].太阳能, 2015(12):13-17. doi:10.3969/j.issn.1003-0417.2015.12.004 |
HUANG H, ZHAO X .A brief analysis of solar thermal utilization[J].Solar Energy,2015(12):13-17. doi:10.3969/j.issn.1003-0417.2015.12.004 | |
7 | 郑彪 .关于降低大规模光伏发电对电力系统影响的研究[J].电子元器件与信息技术,2021,5(7):2-5. |
ZHENG B .Research on reducing the impact of large-scale photovoltaic power generation on the power system[J].Electronic Components and Information Technology,2021,5(7):2-5. | |
8 | KERN E C J, RUSSELL M C .Combined photovoltaic and thermal hybrid collector systems[C]//IEEE photovoltaic specialists conference.Washington DC,USA:IEEE,1978:152-159. |
9 | POMASKA M, KHLER M, MOYA P P,et al .Transparent silicon carbide/tunnel SiO2 passivation for c‐Si solar cell front side:enabling Jsc> 42 mA/cm2 and iVoc of 742 mV[J].Progress in Photovoltaics Research and Applications,2020,28(4):321-327. doi:10.1002/pip.3244 |
10 | 隆基绿能 .26.30 %!隆基一周两破HJT电池效率世界纪录[EB/OL].(2021-10-28)[2022-02-25].. |
Longji Green Energy .26.30 %!Longji broke HJT battery efficiency world record twice a week[EB/OL].(2021-10-28)[2022-02-25].. | |
11 | FELDMANN F, BIVOUR M, REICHEl C,et al .A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Vocs and FF> 82%[C]//28th European PV Solar Energy Conference and Exhibition.Paris,France:WIP-Renewable Energies,2013:988-992. doi:10.1016/j.solmat.2013.09.017 |
12 | RICHTER A, MÜLLER R, BENICK J,et al .Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J].Nature Energy,2021,6(4):1-10. doi:10.1038/s41560-021-00805-w |
13 | KOJIMA A, TESHIMA K, SHIRAI Y,et al .Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050-6051. doi:10.1021/ja809598r |
14 | JEONG J, KIM M J, SEO J D,et al .Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells[J].Nature,2021,592(7854):381-385. doi:10.1038/s41586-021-03406-5 |
15 | YOO J J, SEO G, CHUA M R,et al .Efficient perovskite solar cells via improved carrier management[J].Nature,2021, 590(7847):587-593. doi:10.1038/s41586-021-03285-w |
16 | NREL .Best research-cell efficiency chart[EB/OL].(2020-10-12)[2022-02-25].. doi:10.2172/1029414 |
17 | PARK N .Research direction toward scalable, stable,and high efficiency perovskite solar cells[J].Advanced Energy Materials,2019,10(13):1903106. doi:10.1002/aenm.201903106 |
18 | JIN B, LIANG Z, MING Y,et al .Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability[J].Nano Energy,2022,94:3966925. doi:10.1016/j.nanoen.2022.106936 |
19 | SHAO M, BIE T, YANG Y P,et al .Over 21% efficiency stable 2D perovskite solar cells[J].Advanced Material,2022,34(1):2107211. doi:10.1002/adma.202107211 |
20 | JI J, LI Y Y, WEI D,et al .Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface[J].Journal of Materials Chemistry A,2016,4(5):1991-1998. doi:10.1039/c5ta08622a |
21 | LI H, JIANG H, WEI Q,et al .Low-dimensional inorganic tin perovskite solar cells prepared by templated growth[J].Angewandte Chemie,2021,60(30):16330-16336. doi:10.1002/anie.202104958 |
22 | JIA E, WEI D, CUI P,et al .Efficiency enhancement with the ferroelectric coupling effect using P(VDF-TrFE) in CH3NH3PbI3 solar cells[J].Advanced Science,2019,6(16):1900252. doi:10.1002/advs.201900252 |
23 | WEI D, SONG D D, JI J,et al .A TiO2 embedded structure for perovskite solar cells with anomalous grain growth and effective electron extraction[J].Journal of Materials Chemistry A,2017,5(4):1406-1414. doi:10.1039/c6ta10418e |
24 | CUI P, WEI D, JI J,et al .Highly efficient electron-selective layer free perovskite solar cells by constructing effective p-n heterojunction[J].Solar RRL,2017,1(2):1600027. doi:10.1002/solr.201600027 |
25 | CUI P, WEI D, JI J,et al .Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%[J].Nature Energy,2019,4(2):150-159. doi:10.1038/s41560-018-0324-8 |
26 | SONG D, CUI P, WANG T,et al .Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells[J].The Journal of Physical Chemistry C,2015,119(40):22812-22819. doi:10.1021/acs.jpcc.5b06859 |
27 | HUANG H, YAN H, DUAN M,et al .TiO2 surface oxygen vacancy passivation towards mitigated interfacial lattice distortion and efficient perovskite solar cell[J].Applied Surface Science,2021,544:148583. doi:10.1016/j.apsusc.2020.148583 |
28 | MIN H, LEE D Y, KIM J,et al .Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J].Nature,2021,598(7881):444-450. doi:10.1038/s41586-021-03964-8 |
29 | LUO C, ZHENG G, GAO F,et al .Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells[J].Joule,2022,6(1):240-257. doi:10.1016/j.joule.2021.12.006 |
30 | LI J L, QI W J, LI Y M,et al .UV light absorbers executing synergistic effects of passivating defects and improving photostability for efficient perovskite photovoltaics[J].Journal of Energy Chemistry,2022,67:138-146. doi:10.1016/j.jechem.2021.09.027 |
31 | MA S, YUAN G Z, ZHANG Y,et al .Development of encapsulation strategies towards the commercialization of perovskite solar cells[J].Energy & Environmental Science,2022,15(1):13-55. doi:10.1039/d1ee02882k |
32 | SONG D D, JI J, LI Y Y,et al .Degradation of organometallic perovskite solar cells induced by trap states[J].Applied Physics Letters,2016,108(9):093901.1-093901.5. doi:10.1063/1.4943019 |
33 | JANG Y W, LEE S M, YEOM K M,et al .Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth[J].Nature Energy, 2021,6(1):63-71. doi:10.1038/s41560-020-00749-7 |
34 | WU H, XU C, ZHANG Z,et al .Omnibearing interpretation of external ions passivated ion migration in mixed halide perovskites[J].Nano Lett,2022,22(4):1467-1474. doi:10.1021/acs.nanolett.1c03336 |
35 | DOHERTY T A S, NAGANE S, KUBICKI D J,et al .Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases[J].Science,2021,374(6575):1598-1605. doi:10.1126/science.abl4890 |
36 | CHEN S, ZHANG Y, ZHANG X,et al .General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism[J].Advanced Materials,2020,32(29):2001107. doi:10.1002/adma.202001107 |
37 | WEI D D, HUANG H, CUI P,et al .Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air[J].Nanoscale,2019,11(3):1228-1235. doi:10.1039/c8nr07638c |
38 | ZHANG F, PARK S Y, YAO C,et al .Metastable dion-jacobson 2D structure enables efficient and stable perovskite solar cells[J].Science,2022,375(6576):71-76. doi:10.1126/science.abj2637 |
39 | MENG W, ZHANG K, OSVET A,et al .Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells[J].Joule,2022,6(2):458-475. doi:10.1016/j.joule.2022.01.011 |
40 | CHEN W, ZHU Y, XIU J,et al .Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer[J].Nature Energy,2022,6(2):458-475. |
41 | MA S, BAI Y, LI Y J,et al .1 000 h operational lifetime perovskite solar cells by ambient melting encapsulation[J].Advanced Energy Materials,2020,10(9):1902472.1-1902472.8. doi:10.1002/aenm.201902472 |
42 | WEI D, MA F S, WANG R,et al .Ion-migration inhibition by the cation-pi interaction in perovskite materials for efficient and stable perovskite solar cells[J].Advanced Materials,2018,30(31):1707583. doi:10.1002/adma.201707583 |
43 | JI J, LIU X, JIANG H,et al .Two-stage ultraviolet degradation of perovskite solar cells induced by the Oxygen vacancy-Ti(4+) states[J].iScience,2020,23(4):101013. doi:10.1016/j.isci.2020.101013 |
44 | KROGSTRUP P, JØRGENSEN H I, HEISS M,et al .Single-nanowire solar cells beyond the Shockley-Queisser limit[J].Nature Photonics,2013,7(4):306-310. doi:10.1038/nphoton.2013.32 |
45 | GUTSCHE C, LYSOC A, BRAAM D,et al .n-GaAs/InGaP/p-GaAs core-multishell nanowire diodes for efficient light-to-current conversion[J].Advanced Functional Materials,2012,22(5):929-936. doi:10.1002/adfm.201101759 |
46 | TIAN B, ZHENG C, KEMPA T J,et al .Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J].Nature,2007,449(7164):885-889. doi:10.1038/nature06181 |
47 | LI Y F, LI M C, LI R K,et al .Linear length-dependent light-harvesting ability of silicon nanowire[J].Optics Communications,2015,355:6-9. doi:10.1016/j.optcom.2015.06.027 |
48 | LI Y F, LI M C, LI R K,et al .Exact comprehensive equations for the photon management properties of silicon nanowire[J].Scientific Reports,2016,6:24847. doi:10.1038/srep24847 |
49 | TONG J, ZHANG M H, ZHANG S H,et al .Effects of the ambient medium and structure parameter on the optical properties of tapered silicon nanowire[J].Optics Communications,2020,454:124515. doi:10.1016/j.optcom.2019.124515 |
50 | LI Y F, LIU W Q, LUO Y N,et al .Oxidation of silicon nanowire can transport much more light into silicon substrate[J].Optics Express,2018,26(2):A19-A29. doi:10.1364/oe.26.000a19 |
51 | LI Y F, LI M C, FU P F,et al .A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells[J].Scientific Reports,2015,5:11532. doi:10.1038/srep11532 |
52 | GAO Z, LIN Z, SANG N A,et al .Excellent light-capture capability of trilobal SiNW for ultra-high JSC in single-nanowire solar cells[J].Photonics Research,2020,8(6):995-1001. doi:10.1364/prj.385867 |
53 | LI Y F, LUO Y N, LIU W J,et al .Specific distribution of the light captured by silver nanowire[J].Optics Express,2017,25(8): 9225-9231. doi:10.1364/oe.25.009225 |
54 | LI Y F, LUO Y, LUO Y N,et al .Light harvesting of silicon nanostructure for solar cells application[J].Optics Express,2016,24(14): A1075-A1082. doi:10.1364/oe.24.0a1075 |
55 | LI Y F, LI M C, SONG D D,et al .Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells[J].Nano Energy,2015,11:756-764. doi:10.1016/j.nanoen.2014.11.054 |
56 | J.M SPUIGEON, BOETTCHER S W, KELZENBERG M D,et al .Flexible,polymer-supported,Si wire array photoelectrodes[J].Advanced Materials,2010,22(30):3277-3281. |
57 | KIM J H, KANG S B, YU H H,et al .Augmentation of absorption channels induced by wave-chaos effects in free-standing nanowire arrays[J].Optics Express, 2020,28(16):23569-23583. doi:10.1364/oe.398687 |
58 | KANG S B, KIM J H, JEONG M H,et al .Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility[J].Light Science & Applications,2019,8(1):121-135. doi:10.1038/s41377-019-0234-y |
59 | GAO Z L, GAO T, CHEN Y C,et al .Silicon nanowire design for ultrahigh extinction by dipole near-field interaction in transparent solar cells[J].The Journal of Physical Chemistry C,2021,125(7):3781-3792. doi:10.1021/acs.jpcc.0c11588 |
60 | GAO Z L, GENG Q, WANG Z,et al .Helical SiNW design with a dual-peak response for broadband scattering in translucent solar cells[J].Materials Advances,2022,3(2):953-961. doi:10.1039/d1ma00988e |
61 | YOON S S, KHANG D Y .High efficiency (>17%) Si-organic hybrid solar cells by simultaneous structural, electrical, and interfacial engineering via low-temperature processes[J].Advanced Energy Materials,2018,8(9):1702655.1-1702655.8. doi:10.1002/aenm.201702655 |
62 | JIAN H, GAO P Q, YANG Z H,et al .Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer[J].Advanced Materials,2017,29(15):1606321. doi:10.1002/adma.201606321 |
63 | GENG Q, WANG Z, GAO Z L,et al .Phase separation to improve the conductivity and work function of the PEDOT:PSS solution for silicon hybrid solar cells[J].The Journal of Physical Chemistry C,2021,125(48):26379-26388. doi:10.1021/acs.jpcc.1c08816 |
64 | GAO T, GENG Q, GAO Z L,et al .Improving junction quality via modifying the Si surface to enhance the performance of PEDOT:PSS/Si hybrid solar cells[J].ACS Applied Energy Materials,2021, 4(11):12543-12551. doi:10.1021/acsaem.1c02338 |
65 | CHEN L, GAO Z L, ZHENG Y P,et al .14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer[J].Solar Energy, 2018,174:549-555. doi:10.1016/j.solener.2018.09.035 |
66 | GAO Z L, GAO T, GENG Q,et al .Improving light absorption of active layer by adjusting PEDOT:PSS film for high efficiency Si-based hybrid solar cells[J].Solar Energy,2021,228:299-307. doi:10.1016/j.solener.2021.09.064 |
67 | GAO Z L, LIN G L, CHEN Y C,et al .Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells[J].Solar Energy,2020,205:275-281. doi:10.1016/j.solener.2020.05.065 |
68 | DING W J, BAUER T .Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J].Engineering,2021,7(3):334-347. doi:10.1016/j.eng.2020.06.027 |
69 | 孙峰,毕文剑,周楷,等 .太阳能热利用技术分析与前景展望[J].太阳能,2021(7):23-36. doi:10.19911/j.1003-0417.tyn20200519.02 |
SUN F, BI W J, ZHOU K,et al .Technology analysis and prospects of solar thermal utilization[J].Solar Energy,2021(7):23-36. doi:10.19911/j.1003-0417.tyn20200519.02 | |
70 | 徐立,孙飞虎,李钧,等.流量对抛物面槽式太阳能集热器传热特性影响的实验分析[J].发电技术,2021,42(6):665-672. doi:10.12096/j.2096-4528.pgt.21072 |
XU L, SUN F H, LI J,et al .Experimental analysis of the influence of flow rate on heat transfer characteristics of parabolic trough solar collector[J]. Power Generation Technology,2021,42(6):665-672. doi:10.12096/j.2096-4528.pgt.21072 | |
71 | XU X, VIGNAROOBAN K, XU B,et al .Prospects and problems of concentrating solar power technologies for power generation in the desert regions[J].Renewable and Sustainable Energy Reviews,2016,53:1106-1131. doi:10.1016/j.rser.2015.09.015 |
72 | 罗智慧,龙新峰 .槽式太阳能热发电技术研究现状与发展[J].电力设备,2006,7(11):29-32. |
LUO Z H, LONG X F .State and trend of solar parabolic trough power generation technology[J].Electrical Equipment,2006,7(11):29-32. | |
73 | PAVLOVIĆ T M, RADONJIĆ I S, MILOSAVLJEVIĆ D D,et al .A review of concentrating solar power plants in the world and their potential use in Serbia[J].Renewable and Sustainable Energy Reviews,2012,16(6):3891-3902. doi:10.1016/j.rser.2012.03.042 |
74 | 国家太阳能光热产业技术创新战略联盟 .2021中国太阳能热发电行业蓝皮书[R].北京:国家太阳能光热产业技术创新战略联盟,2022. doi:10.1016/b978-0-12-823959-9.00001-5 |
China Solar Thermal Alliance .2021 China solar thermal power industry blue book[R].Beijing:China Solar Thermal Alliance,2022. doi:10.1016/b978-0-12-823959-9.00001-5 | |
75 | 胡永生 .太阳能与燃煤机组互补电站热力特性与集成机理研究[D].北京:华北电力大学,2014. doi:10.7666/d.Y2657921 |
HU Y S .Study on thermal performance and integrated mechanism of solar-aided coal fired power plant[D].Beijing:North China Electric Power University,2014. doi:10.7666/d.Y2657921 | |
76 | TURCHI C, MA Z, NEISES T,et al .Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J].Journal of Solar Energy Engineering-transactions of the Asme,2013,135:041007. doi:10.1115/1.4024030 |
77 | PADILLA R V, SOO T Y C, BENITO R,et al . Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers[J].Applied Energy,2015,148:348-65. doi:10.1016/j.apenergy.2015.03.090 |
78 | YING Y, HU E .Thermodynamic advantage of using solar energy in the conventional power station[J].Applied Thermal Engineering,1999,19(11):1173-117. doi:10.1016/s1359-4311(98)00114-8 |
79 | HU E .Solar thermal aided power generation[J].Applied Energy,2010,87(9):2881-2885. doi:10.1016/j.apenergy.2009.10.025 |
80 | ZHAI R R, PENG P, YANG Y P,et al .Optimization study of integration strategies in solar aided coal-fired power generation system[J].Renewable Energy,2014,68:80-86. doi:10.1016/j.renene.2014.01.032 |
81 | ZHU Y, ZHAI R R, ZHAO M M,et al .Evaluation methods of solar contribution in solar aided coal-fired power generation system[J].Energy Conversion and Management,2015,102:209-216. doi:10.1016/j.enconman.2015.01.046 |
82 | ZHAI R R, LIU H T, LI C,et al .Analysis of a solar-aided coal-fired power generation system based on thermo-economic structural theory[J].Energy,2016,102:375-387. doi:10.1016/j.energy.2016.02.086 |
83 | LI C, ZHAI R R, YANG Y P,et al .Thermal performance of different integration schemes for a solar tower aided coal-fired power system[J].Energy Conversion and Management,2018,171:1237-1245. doi:10.1016/j.enconman.2018.06.064 |
84 | LI C, ZHAI R R, YANG Y P,et al .Annual performance analysis and optimization of a solar tower aided coal-fired power plant[J].Applied Energy,2019,237:440-456. doi:10.1016/j.apenergy.2019.01.003 |
85 | LIU H T, ZHAI R R, PATCHIGOLLA K,et al .Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system[J].Energy,2020,201:117597. doi:10.1016/j.energy.2020.117597 |
86 | ZHANG H, WANG N, LIANG K,et al .Research on the performance of solar aided power generation system based on annular fresnel solar concentrator[J].Energies,2021,6(14):1579. |
87 | 冯蕾 .光-煤互补复合发电系统优化设计及其热力性能分析[D].北京:华北电力大学,2016. doi:10.7666/d.Y3115453 |
FENG L .Analysis on optimization design and thermodynamic performance of solar aided power generation system[D].Beijing:North China Electric Power University,2016. doi:10.7666/d.Y3115453 | |
88 | 党怡天 .我国被动式太阳能采暖技术的应用现状及发展前景[J].河南科技,2021,40(7):119-121. doi:10.3969/j.issn.1003-5168.2021.07.045 |
DANG Y T .Application status and development prospect of passive solar heating technology in China[J].Journal of Henan Science and Technology,2021,40(7):119-121. doi:10.3969/j.issn.1003-5168.2021.07.045 | |
89 | 龙激波,阿勇嘎,王泉,等 .光热建筑一体化Trombe墙体系统传热性能[J].土木建筑与环境工程,2018,40(1):141-148. doi:10.11835/j.issn.1674-4764.2018.01.020 |
LONG J B, A Y G, WANG Q,et al .Heat transfer performance of a photo-thermal trombe wall system integrated with building[J].Journal of Civil, Architectural & Environmental Engineering,2018, 40(1):141-148. doi:10.11835/j.issn.1674-4764.2018.01.020 | |
90 | 郭枭,邱云峰,史志国,等 .储热型太阳能供暖系统热输送全过程特性研究[J].化工学报,2021,72(10):5384-5395. doi:10.11949/0438-1157.20210480 |
GUO X, QIU Y F, SHI Z G,et al .Study on whole process characteristic of heat transfer in solar heating system with heat storage[J].CIESC Journal,2021,72(10):5384-5395. doi:10.11949/0438-1157.20210480 | |
91 | 李楠,田昕,王皆腾,等 .北京某农村住宅空气源热泵辅助太阳能供暖系统的运行性能[J].暖通空调, 2017,47(4):136-140. |
LI N, TIAN X, WANG J T,et al .Operation performance of air-source heat pump assisted soar heating system in Beijing rural residence[J].Heating Ventilating & Air Conditioning,2017,47(4):136-140. | |
92 | 程友良,刘萌,刘志东,等 .平板型集热器驱动的小型太阳能吸收式制冷系统运行分析与优化研究[J]. 可再生能源,2021,39(8):1023-1029. doi:10.3969/j.issn.1671-5292.2021.08.006 |
CHENG Y L, LIU M, LIU Z D,et al .Operation analysis and optimization study of a small absorption refrigeration system driven by flat plate collector[J].Renewable Energy Resources,2021,39(8):1023-1029. doi:10.3969/j.issn.1671-5292.2021.08.006 | |
93 | 王树成,付忠广,张天清,等 .太阳能吸收式制冷系统动态特性分析[J].太阳能学报,2020,41(1):66-71. |
WANG S C, FU Z G, ZHANG T Q,et al .Dynamic analysis of solar powered absorption refrigeration system[J].Acta Energiae Solaris Sinica,2020,41(1):66-71. | |
94 | 叶鸿烈,杨军伟,王飞,等 .聚光直热式加湿除湿型太阳能海水淡化装置性能测试与经济性分析[J].太阳能学报,2019,40(2):505-512. |
YE H L, YANG J W, WANG F,et al .Performance study of a humidified-dehumidified solar water desalination device with light concentration and direct heating[J].Acta Energiae Solaris Sinica,2019,40(2):505-512. | |
95 | 薛喜东,张丹,李露,等 .太阳能空气隙膜蒸馏海水淡化的试验[J].净水技术,2018,37(9):113-119. doi:10.15890/j.cnki.jsjs.2018.09.020 |
XUE X D, ZHANG D, LI L,et al .Experiment of air gap membrane distillation (AGMD) by solar energy for seawater desalination[J].Water Purification Technology,2018,37(9):113-119. doi:10.15890/j.cnki.jsjs.2018.09.020 | |
96 | 马明瑞,李明,李国良,等 .低截取比CPC空气集热器及其性能试验研究[J].云南师范大学学报(自然科学版),2021,41(1):5-9. doi:10.7699/j.ynnu.ns-2021-002 |
MA M R, LI M, LI G L,et al .Low intercept ratio CPC air collector and its experimental research[J].Journal of Yunnan Normal University(Natural Sciences Edition),2021,41(1):5-9. doi:10.7699/j.ynnu.ns-2021-002 | |
97 | BERGENE T, LOVVIK O M .Model calculations on a flat-plate solar heat collector with integrated solar cells[J].Solar Energy,1995,55:453-462. doi:10.1016/0038-092x(95)00072-y |
98 | 张哲旸,巨星,潘信宇,等 .太阳能光伏-光热复合发电技术及其商业化应用[J].发电技术,2020,41(3):220-230. doi:10.12096/j.2096-4528.pgt.19137 |
ZHANG Z Y, JU X, PAN X Y,et al . Photovoltaic/concentrated solar power hybrid technology and its commercial application[J].Power Generation Technology,2020,41(3):220-230. doi:10.12096/j.2096-4528.pgt.19137 | |
99 | KALOGIROU S A, TRIPANAGNOSTOPOULOS Y . Hybrid PV/T solar systems for domestic hot water and electricity production[J].Energy Conversion and Management,2006,47:3368-3382. doi:10.1016/j.enconman.2006.01.012 |
100 | CHOW T T .A review on photovoltaic/thermal hybrid solar technology[J].Applied Energy,2010,87:365-379. doi:10.1016/j.apenergy.2009.06.037 |
101 | JIA Y T, GURUPRASAD A, FANG G Y .Development and applications of photovoltaic-thermal systems:a review[J].Renewable and Sustainable Energy Reviews,2019,102:249-265. |
102 | PRAKASH J .Transient analysis of a photovoltaic/thermal solar collector for co-generation of electricity and hot air/water[J].Energy Conversion and Management,1994,35:967-972. doi:10.1016/0196-8904(94)90027-2 |
103 | PEI G, ZHANG T, FU H D,et al .An experimental study on a novel heat pipe-type photovoltaic/thermal system with and without glass cover[J].International Journal of Green Energy,2012,10(1):72-89. doi:10.1080/15435075.2011.651752 |
104 | FU H D, PEI G, ZHANG T,et al .Experimental study on a heat pipe PV/T system[J].IET Renewable Power Generation,2012,6(3):129-136. doi:10.1049/iet-rpg.2011.0142 |
105 | PEI G, FU H D E, ZHU H J,et al .Performance study and parametric analysis of a novel heat pipe PV/T system[J].Energy,2012,37:384-395. doi:10.1016/j.energy.2011.11.017 |
106 | PEI G, FU H D, ZHANG T,et al .A numerical and experimental study on a heat pipe PV/T system[J].Solar Energy,2011,85:911-921. doi:10.1016/j.solener.2011.02.006 |
107 | ZHANG T, YAN Z W, XIAO L,et al .Experimental study and design sensitivity analysis of a heat pipe photovoltaic/thermal system[J].Applied Thermal Engineering,2019,162:114318. doi:10.1016/j.applthermaleng.2019.114318 |
108 | PEI G, FU H D, JI J,et al .Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production[J].Energy Conversion and Management,2012,56:8-21. doi:10.1016/j.enconman.2011.11.011 |
109 | ZHANG T, CAI J Y, ZHENG W J,et al .Comparative and sensitive analysis of the annual performance between the conventional and the heat pipe PV/T systems[J].Case Studies in Thermal Engineering,2021,28:101380. doi:10.1016/j.csite.2021.101380 |
110 | ZHANG T, ZHENG W J, WANG L Y,et al .Experimental study and numerical validation on the effect of inclination angle to the thermal performance of solar heat pipe photovoltaic/thermal system[J].Energy,2021,223:120020. doi:10.1016/j.energy.2021.120020 |
111 | PEI G, ZHANG T, YU Z,et al .Comparative study of a novel heat pipe photovoltaic/thermal collector and a water thermosiphon photovoltaic/thermal collector[J]. PIME-Part A:Journal of Power and Energy,2011,225(3):271-278. doi:10.1177/2041296710394271 |
112 | 张 涛,朱群志,张苏阳,等 .环形重力热管式PV/T系统与常规PV/T系统的对比实验研究[J].太阳能学报,2017,38(12):3251-3258. doi:10.1088/1742-6596/52/1/012017 |
ZHANG T, ZHU Q Z, ZHANG S Y,et al .Comparative experimental study of loop thermosyphon pv/t system and common PV/T system[J].Acta Energiae Solaris Sinica,2017,38(12):3251-3258. doi:10.1088/1742-6596/52/1/012017 | |
113 | ZHANG T, PEI G, ZHU Q Z,et al .Investigation on the optimum volume-filling ratio of a loop thermosyphon solar water-heating system[J].Journal of Solar Energy Engineering,2016,138(4):041006. doi:10.1115/1.4033403 |
114 | ZHANG T, YAN Z W, PEI G,et al .Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system[J].Renewable Energy,2019,143:233-242. doi:10.1016/j.renene.2019.05.014 |
115 | JI J, PEI G, CHOW T T,et al .Performance of multi-functional domestic heat-pump system[J].Applied Energy,2005,80:307-326. doi:10.1016/j.apenergy.2004.04.005 |
116 | GAO Y, JI J, HAN K,et al .Experimental and numerical study of a PV/T direct-driven refrigeration/heating system[J].Energy,2021,230: 120793. doi:10.1016/j.energy.2021.120793 |
117 | GAO Y, JI J, HAN K,et al .Comparative analysis on performance of PV direct-driven refrigeration system under two control methods[J].International Journal of Refrigeration,2021,127:21-33. doi:10.1016/j.ijrefrig.2021.03.003 |
118 | CAI J, JI J, WANG Y,et al .A novel PV/T-air dual source heat pump water heater system:dynamic simulation and performance characterization[J].Energy Conversion and Management,2017,148:635-645. doi:10.1016/j.enconman.2017.06.036 |
119 | ZHANG F, CAI J, JI J,et al .Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump[J].Renewable Energy,2020,161:221-229. doi:10.1016/j.renene.2020.07.106 |
120 | CAI J, ZHOU H, XU L,et al .Experimental and numerical investigation on the heating performance of a novel multi-functional heat pump system with solar-air composite heat source[J].Sustainable Cities and Society,2021,73:103118. doi:10.1016/j.scs.2021.103118 |
121 | CAI J, ZHOU H, XU L,et al .Energy and exergy analysis of a novel solar-air composite source multi-functional heat pump[J].Renewable Energy, 2022,185:32-46. doi:10.1016/j.renene.2021.12.033 |
122 | FU Z, LIANG X, LI Y,et al .Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs[J].Renewable Energy,2021,169:308-317. doi:10.1016/j.renene.2020.12.108 |
123 | SHAN F, TANG F, CAO L,et al .Comparative simulation analyses on dynamic performances of photovoltaic-thermal solar collectors with different configurations[J].Energy Conversion & Management,2014,87:778-786. doi:10.1016/j.enconman.2014.07.077 |
124 | FU Z, LI Y, LIANG X,et al .Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs[J].Energy,2021,228:120509. doi:10.1016/j.energy.2021.120509 |
125 | QIU Z Z, MA X L, ZHAO X D,et al .Experimental investigation of the energy performance of a novel micro-encapsulated phase change material (MPCM) slurry based PV/T system[J].Applied Energy 2016, 165:260-271. |
126 | 毕凯,宋明中,林玉杰,等 .光伏建筑一体化技术及应用[J].中国科技信息,2021(11):41-42. |
BI K, SONG M Z, LIN Y J,et al .Photovoltaic building integration technology and application[J].China Science and Technology Information,2021(11):41-42. | |
127 | VENKATARAMAN D, YURT S, VENKATRAMAN B H, et al .Role of molecular architecture in organic photovoltaic cells[J].The Journal of Physical Chemistry Letters,2010,1(6):947-958. doi:10.1021/jz1000819 |
128 | KIM J Y, KIM S H, LEE H H,et al .New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer[J].Advanced Materials,2006,18(5):572-576. doi:10.1002/adma.200501825 |
129 | 胡福年,徐伟成,陈军 .计及电动汽车充电负荷的风电-光伏-光热联合系统协调调度[J].电力系统保护与控制,2021,49(13):10-20. doi:10.19783/j.cnki.pspc.201075 |
HU F N, XU W C, CHEN J .Coordinated scheduling of wind power photovoltaic solar thermal combined system considering electric vehicle charging load[J].Power System Protection and Control,2021,49(13):10-20. doi:10.19783/j.cnki.pspc.201075 |
[1] | Bin ZHAO, Gao LIANG, Menghao JIANG, Gang ZOU, Li WANG. Grid-Connected Power Fluctuation Suppression and Energy Storage Optimization Configuration of Photovoltaic-Energy Storage System [J]. Power Generation Technology, 2024, 45(3): 423-433. |
[2] | Yiwei QIAN, Hao TIAN, Caihua LIU, Xinze TIAN, Xia ZHOU, Jianfeng DAI. Droop Control Strategy of Distributed Photovoltaic Reactive Power Considering Probability Distribution [J]. Power Generation Technology, 2024, 45(2): 273-281. |
[3] | Xiaobiao FU, Jiaqi HOU, Baoju LI, Yakun WEN, Xiaowen LAI, Lei GUO, Zhiwei WANG, Yao WANG, Haifeng ZHANG, Dexin LI. A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction [J]. Power Generation Technology, 2024, 45(2): 299-311. |
[4] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[5] | Tianqi SONG, Yunting MA, Zhihui ZHANG. Operation Mode and Economy of Photovoltaic Coupled Water Electrolysis Hydrogen Production System As a Kind of Virtual Power Plant Resource [J]. Power Generation Technology, 2023, 44(4): 465-472. |
[6] | ABD-HAMID Mohamed, Longyu XIA, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Performance Analysis of Photovoltaic/Thermal Hybrid System Integrated With Phase Change Heat Storage Materials [J]. Power Generation Technology, 2023, 44(1): 53-62. |
[7] | Qingquan LÜ, Zhenzhen ZHANG, Yanhong MA, Jianmei ZHANG, Pengfei GAO, Tingting JIANG, Honglu ZHU. Analysis and Research on Output Characteristics of Regional Photovoltaic Power Generation [J]. Power Generation Technology, 2022, 43(3): 413-420. |
[8] | Yao XIAO, Wenze NIU, Gaosheng WEI, Liu CUI, Xiaoze DU. Review on Research Status and Developing Tendency of Solar Photovoltaic/Thermal Technology [J]. Power Generation Technology, 2022, 43(3): 392-404. |
[9] | Geng LUO. Layout Method and Row Pitch Calculation for Mountain Photovoltaic Array [J]. Power Generation Technology, 2022, 43(2): 320-327. |
[10] | Yongrui ZHANG, Jie YAN, Aimei LIN, Shuang HAN, Yongqian LIU. Integrated Correction Method of Multi-point Numerical Weather Prediction Wind Speed and Irradiance [J]. Power Generation Technology, 2022, 43(2): 278-286. |
[11] | Jixin YANG, Jiuhe WANG, Mian WANG, Zhenye WANG. Research on Virtual Inertial Control Strategy of DC Microgrid With Photovoltaic and Storage System Based on Passivity-based Control [J]. Power Generation Technology, 2021, 42(5): 576-584. |
[12] | Jianhua ZHU, Zhenqing LI, Lichang XU. Modal Identification and Analysis of Photovoltaic Converter Based on Random Subspace [J]. Power Generation Technology, 2021, 42(2): 201-206. |
[13] | Xuewei SONG, Yuyao LIU. Wind and Photovoltaic Generation Scene Division Based on Improved K-means Clustering [J]. Power Generation Technology, 2020, 41(6): 625-630. |
[14] | Pan WU. Power Forecasting of Photovoltaic Power Generation System [J]. Power Generation Technology, 2020, 41(3): 231-236. |
[15] | Zheyang ZHANG,Xing JU,Xinyu PAN,Yu YANG,Chao XU,Xiaoze DU. Photovoltaic/Concentrated Solar Power Hybrid Technology and Its Commercial Application [J]. Power Generation Technology, 2020, 41(3): 220-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||