Power Generation Technology ›› 2022, Vol. 43 ›› Issue (1): 111-118.DOI: 10.12096/j.2096-4528.pgt.20033
• New Energy • Previous Articles Next Articles
Daye YANG1, Zutao XIANG1, Xuzhi LUO2, Ruihua SONG1, Qiyu CHEN1, Lin SHEN1, Xiaotong WANG1
Received:
2021-04-06
Published:
2022-02-28
Online:
2022-03-18
Supported by:
CLC Number:
Daye YANG, Zutao XIANG, Xuzhi LUO, Ruihua SONG, Qiyu CHEN, Lin SHEN, Xiaotong WANG. Analysis on Influence Factors of Temporary Overvoltage of Load Rejection Fault of Offshore Wind Power Transmission System of Permanent Magnet Synchronous Generator[J]. Power Generation Technology, 2022, 43(1): 111-118.
直流母线电压/pu | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
1.00 | 1.20 | 1.22 |
1.02 | 1.22 | 1.24 |
1.04 | 1.25 | 1.28 |
Tab. 1 Temporary overvoltage considering different values of DC bus voltage
直流母线电压/pu | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
1.00 | 1.20 | 1.22 |
1.02 | 1.22 | 1.24 |
1.04 | 1.25 | 1.28 |
调制波限幅 | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
1.20 | 1.21 | 1.23 |
1.15 | 1.20 | 1.22 |
1.10 | 1.17 | 1.17 |
Tab. 2 Temporary overvoltage considering different magnitude limits of modulation wave
调制波限幅 | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
1.20 | 1.21 | 1.23 |
1.15 | 1.20 | 1.22 |
1.10 | 1.17 | 1.17 |
chopper电路动作电压/pu | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
1.10 | 1.20 | 1.22 |
1.08 | 1.18 | 1.20 |
1.05 | 1.15 | 1.17 |
Tab. 3 Temporary overvoltage considering different activated values of chopper circuit
chopper电路动作电压/pu | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
1.10 | 1.20 | 1.22 |
1.08 | 1.18 | 1.20 |
1.05 | 1.15 | 1.17 |
1.3pu过电压保护 动作延时/ms | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
0 | 1.20 | 1.22 |
5.0 | 1.27 | 1.28 |
10.0 | 1.50 | 1.56 |
Tab. 4 Temporary overvoltage considering different delays of overvoltage protection
1.3pu过电压保护 动作延时/ms | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
0 | 1.20 | 1.22 |
5.0 | 1.27 | 1.28 |
10.0 | 1.50 | 1.56 |
并网断路器动作时间/ms | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
50.0 | 1.20 | 1.22 |
80.0 | 1.20 | 1.22 |
100.0 | 1.20 | 1.22 |
Tab. 5 Temporary overvoltage considering different action time of grid connected breaker
并网断路器动作时间/ms | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
50.0 | 1.20 | 1.22 |
80.0 | 1.20 | 1.22 |
100.0 | 1.20 | 1.22 |
无功补偿装置类型 | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
50%FC+ 50%STATCOM | 1.19 | 1.22 |
100%STATCOM | 1.18 | 1.22 |
Tab. 6 Temporary overvoltage considering different types of reactive power compensation device
无功补偿装置类型 | 暂时过电压最大值/pu | |
---|---|---|
风电场侧 | 系统侧 | |
50%FC+ 50%STATCOM | 1.19 | 1.22 |
100%STATCOM | 1.18 | 1.22 |
1 | 余潇,卜广全,王姗姗 .风电经柔直孤岛送出交流暂态过电压抑制策略研究[J/OL].发电技术:1-8[2022-01-04]. |
229 | 2140.010.html. YU X,BU G Q,WANG S S.Study on suppression strategy of ac transient overvoltage sent by wind power through soft straight Island[J].Power Generation Technology: 1-8[2022-01-04].. |
2 | 王秀丽,赵勃扬,郑伊俊,等 .海上风力发电及送出技术与就地制氢的发展概述[J].浙江电力,2021,40(10):3-12. |
WANG X L, ZHAO B Y, ZHENG Y J,et al .A general survey of offshore wind power generation and transmission technologies and local hydrogen production [J].Zhejiang Electric Power,2021,40(10):3-12. | |
3 | 袁艺嘉,孔明,李元贞 .海上风电柔性直流换流平台用±200 kV直流GIS关键电气应力研究[J].广东电力,2021,34(5):38-47. doi:10.3969/j.issn.1007-290X.2021.005.005 |
YUAN Y J, KONG M, LI Y Z .Study on key electrical stress of ± 200 kV DC GIS for VSC-HVDC converter platform for offshore wind power[J].Guangdong Electric Power,2021,34(5):38-47. doi:10.3969/j.issn.1007-290X.2021.005.005 | |
4 | 鲁裕婷,赵天乐,都洪基 .风电场经VSC-HVDC并网故障穿越协调控制策略[J].电力工程技术,2020,39(3):30-35. |
LU Y T, ZHAO T L, DU H J .A coordination control strategy of integrated wind farm low voltage ride-through based on VSC-HVDC[J].Electric Power Engineering Technology,2020,39(3):30-35. | |
5 | 符杨,刘阳,黄玲玲,等 .海上风电场集群接入系统组网优化[J].中国电机工程学报,2018,38(12):3441-3450. doi:10.13334/j.0258-8013.pcsee.171310 |
FU Y, LIU Y, HUANG L L,et al .Optimization of grid integration network for offshore wind farm cluster[J].Proceedings of the CSEE,2018,38(12):3441-3450. doi:10.13334/j.0258-8013.pcsee.171310 | |
6 | 余浩,肖彭瑶,林勇,等 .大规模海上风电高电压穿越研究进展与展望[J].智慧电力,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 |
YU H, XIAO P Y, LIN Y,et al .Review on high voltage ride-through strategies for offshore doubly-fed wind farms [J].Smart Power,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 | |
7 | 黄子果 .海上风电机组机型发展的技术路线对比[J].中外能源,2019(8):29-35. |
HUANG Z G .Comparison of technical routes for the development of offshore wind turbines[J].Sino-Global Energy,2019(8):29-35. | |
8 | 饶日晟,张亚丽,叶林 .直驱式永磁同步风电机组的风电场降阶等值模型[J].广东电力,2019,32(6):9-17. doi:10.3969/j.issn.1007-290X.2019.006.002 |
RAO R S, ZHANG Y L, YE L .Equivalent model of order reduction of wind power plant with DD-PMSG[J].Guangdong Electric Power,2019,32(6):9-17. doi:10.3969/j.issn.1007-290X.2019.006.002 | |
9 | 叶有名,朱清代,滕予非,等 .基于特高压直流输电无功调制的直流近区交流过电压优化控制策略[J].现代电力,2018,35(6):25-32. doi:10.3969/j.issn.1007-2322.2018.06.004 |
YE Y M, ZHU Q D, TENG Y F,et al .The optimized control strategy for AC overvoltage of the near region grid of DC transmission system based on reactive power control in UHVDC systems[J].Modern Electric Power,2018,35(6):25-32. doi:10.3969/j.issn.1007-2322.2018.06.004 | |
10 | KING R, MOORE F, JENKINS N,et al .Switching transients in offshore wind farms-impact on the offshore and onshore networks[C]//International Conference on Power Systems Transients,Delft,Netherlands:IEEE,2011:1-8. |
11 | 迟永宁,梁伟,张占奎,等 .大规模海上风电输电与并网关键技术研究综述[J].中国电机工程学报,2016,36(14):3758-3771. doi:10.13334/j.0258-8013.pcsee.152756 |
CHI Y N, LIANG W, ZHANG Z K,et al .An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J].Proceedings of the CSEE,2016,36(14):3758-3771. doi:10.13334/j.0258-8013.pcsee.152756 | |
12 | VLADISLAV A .Excessive over-voltage in long cables of large offshore windfarms[J].Wind Engineering,2006,30(5):375-383. doi:10.1260/030952406779502632 |
13 | CHENNAMADHAVUNI A, KIRAN K M, BHIMASINGU R .Investigation of transient and temporary overvoltages in a wind farm[C]//2012 IEEE International Conference on Power System Technology,Auckland,New Zealand:IEEE,2012:1-6. doi:10.1109/powercon.2012.6401440 |
14 | 栗向鑫,贾琳,张硕 .500 kV御道口输变电工程过电压研究[J].华北电力技术,2015(4):1-5. doi:10.16308/j.cnki.issn1003-9171.2015.04.001 |
LI X X, JIA L, ZHANG S .Investigation to power overvoltage of 500 kV Yudaokou transmission system[J].North China Electric Power,2015(4):1-5. doi:10.16308/j.cnki.issn1003-9171.2015.04.001 | |
15 | 陈柏超,罗璇瑶,袁佳歆,等 .考虑工频过电压的海上风电场无功配置方案研究[J].电测与仪表,2018,55(13):78-83. |
CHEN B C, LUO X Y, YUAN J X,et al .Reactive power allocation scheme for offshore wind farm considering power frequency overvoltage[J].Electrical Measurement & Instrumentation,2018,55(13):78-83. | |
16 | 施超,钱康,许文超,等 .海上风电场送出混合线路工频过电压和无功补偿研究[J].电工电气,2015(5):20-24. doi:10.3969/j.issn.1007-3175.2015.05.005 |
SHI C, QIAN K, XU W C,et al .Research on frequency over-voltage and reactive power compensation for offshore wind farm with mixed cable-overhead line[J].Diangong Dianqi,2015(5):20-24. doi:10.3969/j.issn.1007-3175.2015.05.005 | |
17 | 韩坚,顾伟峰 .并网型直驱风力发电机组网侧甩负荷故障分析及保护策略研究[J].风能产业,2016(8):43-48. |
HAN J, GU W F .Study on network side load rejection fault analysis and protection strategy of Grid-connected direct drive wind generator[J].Wind Power Industry,2016(8):43-48. | |
18 | 徐岩,鲁振威,王慧 .双馈风电场送出线路重合闸时间计算方法[J].华北电力大学学报,2017,44(5):10-17. doi:10.3969/j.ISSN.1007-2691.2017.05.02 |
XU Y, LU Z W, WANG H .Study on doubly-fed wind farm transmission line reclosure time calculating [J].Journal of North China Electric Power University,2017,44(5):10-17. doi:10.3969/j.ISSN.1007-2691.2017.05.02 | |
19 | 鞠平,吴峰,金宇清,等 .可再生能源发电系统的建模与控制[M].北京:科学出版社,2014:73. |
JU P, WU F, JIN Y Q,et al .Modeling and control of renewable energy generation systems[M].Beijing:Science Press,2014:73. | |
20 | 全国风力机械标准化技术委员会 . 风力发电机组故障电压穿越能力测试规程: [S].北京:中国标准出版社,2018. doi:10.31389/book1 |
National Technical Committee on Wind Machinery of Standardization Administration . Test code for fault voltage crossing ability of wind turbine: [S].Beijing:China Standars Press,2018. doi:10.31389/book1 |
[1] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[2] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[3] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[4] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[5] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[6] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
[7] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[8] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[9] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
[10] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[11] | Jianing ZHU, Shitan ZHANG, Weichun GE, Chuang LIU, Shuai CHU. Overview of Offshore Wind Power Transmission and Power Transportation Technology [J]. Power Generation Technology, 2022, 43(2): 236-248. |
[12] | Bin XU, Shuai XUE, Houlei GAO, Fang PENG. Development Status and Prospects of Offshore Wind Farms and It’s Key Technology [J]. Power Generation Technology, 2022, 43(2): 227-235. |
[13] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[14] | Zuozhou CHEN, Hao YU, Panpan WANG, Honglin CHEN, Wuhui CHEN. Definition and Influencing Factors of Short-Circuit Ratio Between Offshore Wind Power Cluster and Thermal Power Bundling System [J]. Power Generation Technology, 2022, 43(2): 207-217. |
[15] | Xuelin LI, Ling YUAN. Development Status and Suggestions of Hydrogen Production Technology by Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 198-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||