Power Generation Technology ›› 2022, Vol. 43 ›› Issue (1): 102-110.DOI: 10.12096/j.2096-4528.pgt.20125
• New Energy • Previous Articles Next Articles
Haichuan ZHAO1,2, Shuhui JIN2, Huan WANG2, Shipeng YU2, Ru BAI2, Zuoxia XING1
Received:
2021-02-23
Published:
2022-02-28
Online:
2022-03-18
Supported by:
CLC Number:
Haichuan ZHAO, Shuhui JIN, Huan WANG, Shipeng YU, Ru BAI, Zuoxia XING. Study on Maximum Power Tracking Strategy of 10 MW Medium Voltage Six-Phase Direct-Drive Permanent Magnet Wind Turbine[J]. Power Generation Technology, 2022, 43(1): 102-110.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
额定功率/MW | 10 | 单相定子绕组电阻/Ω | 0.065 |
电机转速/(r·min-1) | 9.5 | 定子绕组d轴电感/mH | 16.7 |
额定电压/V | 3 300 | 定子绕组q轴电感/mH | 31.03 |
额定相电流/A | 1 760 | 直流母线电压/V | 5 000 |
极对数/对 | 66 | 转子磁极磁链/Wb | 40.34 |
额定转矩/(MN·m) | 8.8 | 中间直流电容/mF | 40 |
网侧频率/Hz | 800 | 机侧开关频率/Hz | 800 |
Tab. 1 Parameter of 10 MW PMVSPMSG and converter system
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
额定功率/MW | 10 | 单相定子绕组电阻/Ω | 0.065 |
电机转速/(r·min-1) | 9.5 | 定子绕组d轴电感/mH | 16.7 |
额定电压/V | 3 300 | 定子绕组q轴电感/mH | 31.03 |
额定相电流/A | 1 760 | 直流母线电压/V | 5 000 |
极对数/对 | 66 | 转子磁极磁链/Wb | 40.34 |
额定转矩/(MN·m) | 8.8 | 中间直流电容/mF | 40 |
网侧频率/Hz | 800 | 机侧开关频率/Hz | 800 |
1 | 蔡旭,陈根,周党生,等 .海上风电变流器研究现状与展望[J].全球能源互联网,2019,2(2):102-115. doi:10.19705/j.cnki.issn2096-5125.2019.02.001 |
CAI X, CHEN G, ZHOU D S,et al .Review and prospect on key technologies for offshore wind power converters[J].Journal of Global Energy Interconnection,2019,2(2):102-115. doi:10.19705/j.cnki.issn2096-5125.2019.02.001 | |
2 | 余浩,肖彭瑶,林勇,等 .大规模海上风电高电压穿越研究进展与展望[J].智慧电力,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 |
YU H, XIAO P Y, LIN Y,et al .Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J].Smart Power,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 | |
3 | 何伟冬,王学梅 .用于风电的模块化多电平变流器IGBT的定制化设计[J].电力工程技术,2021,40(4):10-17. |
HE W D, WANG X M .Customized design for IGBTs of modular multilevel converter for wind power system [J].Electric Power Engineering Technology,2021,40(4):10-17. | |
4 | YARAMASU V, WU B, SEN P C,et al .High-power wind energy conversion systems:state-of-the-art and emerging technologies[J].Proceedings of the IEEE,2015,5(103):740-788. |
5 | 赵海川,芦彦东,郑浩康,等 .低压微网中小型直驱永磁风电机组低电压穿越技术研究[J].发电技术,2020,41(6):659-666. doi:10.12096/j.2096-4528.pgt.19160 |
ZHAO H C, LU Y D, ZHENG H K,et al .Research on low voltage ride through for small direct-driven permanent magnet wind turbine in low voltage microgrid[J]. Power Generation Technology,2020,41(6):659-666. doi:10.12096/j.2096-4528.pgt.19160 | |
6 | 曾江,黄仲龙,邱国斌 .考虑中点电位平衡的三电平Boost-逆变器协调控制[J].电气传动,2020,50(4):38-44. |
ZENG J, HUANG Z L, QIU G B .Coordination control of three-level boost-inverter considering neutral-point potential balance[J].Electric Drive,2020,50(4):38-44. | |
7 | 罗锐,何英杰,陈晖,等 .三电平变流器中点电位平衡及低开关损耗SVPWM策略[J].电工技术学报,2018,33(14):3245-3254. doi:10.19595/j.cnki.1000-6753.tces.170786 |
LUO R, HE Y J, CHEN H,et al .SVPWM scheme for three-level converters with neutral-point potential balancing and switching loss reduction[J]. Transactions of China Electrotechnical Society,2018,33(14):3245-3254. doi:10.19595/j.cnki.1000-6753.tces.170786 | |
8 | 秦福祥 .新型三电平零电流开关直流变换器[J].浙江电力,2020,39(10):42-46. |
QIN F X .A novel three-level zero-current-switching DC/dC converter[J]. Zhejiang Electric Power,2020,39(10):42-46. | |
9 | 黄竞智,吴雷,沈佳烨 .NPC型三电平逆变器的中点电位控制方法研究[J].电子测量技术,2019,42(3):40-44. |
HUANG J Z, WU L, SHEN J Y. Research on control method of NPC three-level inverter neutral voltage balance[J].Electronic Measurement Technology,2019,42(3):40-44. | |
10 | 陈兮,黄声华,李炳璋,等 .一种零序注入的三电平中点钳位型变换器中点电位平衡控制策略[J].电工技术学报,2019.34(2):337-348. doi:10.19595/j.cnki.1000-6753.tces.171299 |
CHEN X, HUANG S H, LI B Z,et al. Novel zero sequence injection scheme for three-Level NPC converters considering neutral-point potential balance [J]. Transactions of China Electrotechnical Society,2019,34(2):337-348. doi:10.19595/j.cnki.1000-6753.tces.171299 | |
11 | 霍现旭,胡书举,吕佃顺,等 .六相同步风力发电机矢量控制系统调制策略分析[J].高电压技术,2014,40(11):3597-3605. doi:10.13336/j.1003-6520.hve.2014.11.041 |
HUO X X, HU S J, LÜ D S,et al. Analysis of modulation strategy in six-phase synchronous wind generator vector control system[J].High Voltage Engineering,2014,40(11):3597-3605. doi:10.13336/j.1003-6520.hve.2014.11.041 | |
12 | 高宁,罗悦华,王勇,等. 基于FPGA的三电平风电变流器三维空间矢量调制算法[J].电工技术学报,2013,28(5):227-232. doi:10.3969/j.issn.1000-6753.2013.05.032 |
GAO N, LUO Y H, WANG Y,et al. 3D space vector modulation algorithm based on FPGA for three-level wind power convertor[J].Transactions of China Electrotechnical Society,2013,28(5):227-232. doi:10.3969/j.issn.1000-6753.2013.05.032 | |
13 | 霍现旭,胡书举,葛少云 .基于分类算法的六相同步风力发电机矢量控制系统研究[J].电工技术学报,2014,29(S1):59-65. |
HUO X X, HU S J, GE S Y .Research on vector control system of six-phase synchronous wind turbine based on classification algorithm[J].Transactions of China Electrotechnical Society,2014,29(S1):59-65. | |
14 | 王付胜,欧阳秋,任康乐,等 .一种具有低共模电压的三电平逆变器中点平衡算法[J].太阳能学报,2017,38(7):41-43. |
WANG F S, OUYANG Q, REN K L,et al. A new algorithm to balance the neutral point voltage for three level inverter switch low common-mode voltage[J].Acta Energies Solaris Sinica,2017,38(7):41-43. | |
15 | 张建忠,胡路才,徐帅 . 一种零序电压注入的T型三电平逆变器中点电位平衡控制方法[J].电工技术学报,2020,35(4):807-816. |
ZHANG J Z, HU L C, XU S .Neutral potential balance control method of T-type three-level inverter with zero-sequence voltage injection[J].Transactions of China Electrotechnical Society,2020,35(4):807-816. | |
16 | WANG Z Q, CUI F Y, ZHANG G Z,et al .Novel carrier based PWM strategy with zero sequence voltage injected for three-level NPC inverter[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2016,4(4):1442-1451. doi:10.1109/jestpe.2016.2591618 |
17 | 李晟,王辉,柏睿 .一种基于虚拟空间矢量的三电平NPC变换器中点电位平衡控制方法[J]. 电力学报, 2019,34(2):150-157. doi:10.13357/j.cnki.jep.002789 |
LI S, WANG H, BAI R .A neutral-point potential balancing algorithm for three-level converter based on virtual-space-vector[J]. Journal of Electric Power,2019,34(2):150-157. doi:10.13357/j.cnki.jep.002789 | |
18 | 綦慧,卢昭禹 .I型NPC式三电平变流器中点电位平衡控制的研究与实现[J].电气技术,2016(12):59-64. doi:10.3969/j.issn.1673-3800.2016.12.013 |
QI H, LU Z Y. Research and implementation of neutral point potential balance control for NPC type I three level converter[J].Electrical Engineering,2016(12):59-64. doi:10.3969/j.issn.1673-3800.2016.12.013 | |
19 | 李慧敏,李慧,范新桥. 基于模型预测的三电平PWM 变流器直接功率控制[J].发电技术,2019,40(2):129-133. |
LI H M, LI H, FAN X Q .Model prediction based direct power control strategy for three-level PWM converter[J].Power Generation Technology,2019,40(2):129-133. |
[1] | Dan ZHOU, Zhi YUAN, Ji LI, Wei FAN. An Advanced Fuzzy Control Strategy for Hybrid Energy Storage Systems Considering Smoothing of Wind Power Fluctuations at Future Moments [J]. Power Generation Technology, 2024, 45(3): 412-422. |
[2] | Junhui LI, Guohang CHEN, Teng MA, Cuiping LI, Xingxu ZHU, Chen JIA. Optimal Control Strategy of Peak Shaving of Flow Battery Energy Storage System Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(3): 434-447. |
[3] | Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU. Energy Storage Configuration Considering the System Wind Power Reserve Capacity Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(2): 260-272. |
[4] | Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks [J]. Power Generation Technology, 2024, 45(2): 323-330. |
[5] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[6] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[7] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[8] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[9] | Jian YANG, Yu LIU, Kunpeng HUANG, Yazhou LUO, Siqing NIU, Wei WANG, Jiafei HUAN, Lei ZHANG, Pei ZHANG, Huawei LI. A Method for Estimating Available Power of Wind Farms by Considering the Power Generation Conditions and Station Losses [J]. Power Generation Technology, 2023, 44(2): 235-243. |
[10] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[11] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
[12] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[13] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[14] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[15] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||