Power Generation Technology ›› 2021, Vol. 42 ›› Issue (3): 289-297.DOI: 10.12096/j.2096-4528.pgt.20104
• Energy Internet • Next Articles
Wenbo XUAN1(), Hui LI1(
), Zhongyi LIU1(
), Yeguang SUN2,*(
), Kai HOU2(
)
Received:
2020-09-29
Published:
2021-06-30
Online:
2021-06-29
Contact:
Yeguang SUN
Supported by:
CLC Number:
Wenbo XUAN, Hui LI, Zhongyi LIU, Yeguang SUN, Kai HOU. A Method for Improving the Accommodating Capability of Urban Renewable Energy Based on Virtual Power Plant Technology[J]. Power Generation Technology, 2021, 42(3): 289-297.
月份 | 非供热机组 | 供热煤电机组 | 供热气电机组 | 外受电 | 综合最小出力 |
1 | 1 209 | 2 676 | 1 093 | 631 | 5 609 |
2 | 1 012 | 2 016 | 729 | 631 | 4 388 |
3、11、12 | 1 012 | 2 196 | 911 | 631 | 4 751 |
4、5、9、10 | 1 012 | 1 930 | 663 | 631 | 4 237 |
6、7、8 | 2 024 | 2 830 | 1 424 | 631 | 6 910 |
Tab. 1 Minimum output during heating period of conventional unit MW
月份 | 非供热机组 | 供热煤电机组 | 供热气电机组 | 外受电 | 综合最小出力 |
1 | 1 209 | 2 676 | 1 093 | 631 | 5 609 |
2 | 1 012 | 2 016 | 729 | 631 | 4 388 |
3、11、12 | 1 012 | 2 196 | 911 | 631 | 4 751 |
4、5、9、10 | 1 012 | 1 930 | 663 | 631 | 4 237 |
6、7、8 | 2 024 | 2 830 | 1 424 | 631 | 6 910 |
风电 装机容量/ MW | 风电全年 发电量/ (MW·h) | 风电全年 消纳量/ (MW·h) | 弃风率 (按时 间)/% | 弃风率 (按发电量)/% |
4 493 | 10 427 393 | 9 715 575 | 7.70 | 6.80 |
3 594 | 8 341 914 | 7 999 904 | 4.50 | 4.10 |
3 145 | 7 299 175 | 7 076 762 | 4.00 | 3.00 |
2 965 | 6 882 079 | 6 697 616 | 3.00 | 2.30 |
2 695 | 6 256 436 | 6 119 832 | 2.40 | 2.10 |
1 797 | 4 170 957 | 4 124 785 | 1.00 | 1.10 |
449 | 1 042 739 | 1 041 045 | 0.13 | 0.16 |
Tab. 2 Wind power accommodation
风电 装机容量/ MW | 风电全年 发电量/ (MW·h) | 风电全年 消纳量/ (MW·h) | 弃风率 (按时 间)/% | 弃风率 (按发电量)/% |
4 493 | 10 427 393 | 9 715 575 | 7.70 | 6.80 |
3 594 | 8 341 914 | 7 999 904 | 4.50 | 4.10 |
3 145 | 7 299 175 | 7 076 762 | 4.00 | 3.00 |
2 965 | 6 882 079 | 6 697 616 | 3.00 | 2.30 |
2 695 | 6 256 436 | 6 119 832 | 2.40 | 2.10 |
1 797 | 4 170 957 | 4 124 785 | 1.00 | 1.10 |
449 | 1 042 739 | 1 041 045 | 0.13 | 0.16 |
光伏 装机容量/ MW | 光伏全 年发电量/ (MW·h) | 光伏全 年消纳量/ (MW·h) | 弃光 率(按 时间)/% | 弃光率 (按发 电量)/% |
3 522 | 10 767 427 | 10 304 911 | 6.00 | |
3 307 | 10 109 418 | 9 801 019 | 5.20 | 3.00 |
3 272 | 10 001 743 | 9 704 941 | 5.00 | 2.30 |
3 013 | 9 212 132 | 9 053 511 | 3.00 | 2.00 |
2 935 | 8 972 856 | 8 838 425 | 2.70 | 1.40 |
2 739 | 8 374 665 | 8 295 321 | 1.80 | 0.90 |
1 565 | 4 785 523 | 4 783 428 | 0.16 | 0.04 |
391 | 1 196 380 | 1 196 184 | 0.05 | 0.01 |
Tab. 3 Photovoltaic power accommodation
光伏 装机容量/ MW | 光伏全 年发电量/ (MW·h) | 光伏全 年消纳量/ (MW·h) | 弃光 率(按 时间)/% | 弃光率 (按发 电量)/% |
3 522 | 10 767 427 | 10 304 911 | 6.00 | |
3 307 | 10 109 418 | 9 801 019 | 5.20 | 3.00 |
3 272 | 10 001 743 | 9 704 941 | 5.00 | 2.30 |
3 013 | 9 212 132 | 9 053 511 | 3.00 | 2.00 |
2 935 | 8 972 856 | 8 838 425 | 2.70 | 1.40 |
2 739 | 8 374 665 | 8 295 321 | 1.80 | 0.90 |
1 565 | 4 785 523 | 4 783 428 | 0.16 | 0.04 |
391 | 1 196 380 | 1 196 184 | 0.05 | 0.01 |
总装机 容量/MW | 风电装机 容量/MW | 光伏装机 容量/MW | 弃能率 (按时间)/% | 弃能率 (按发电量)/% |
7 800 | 4 493 | 3 307 | 18.70 | 10.70 |
6 158 | 3 145 | 3 013 | 10.70 | 5.70 |
5 900 | 2 965 | 2 935 | 9.50 | 4.90 |
5 044 | 2 696 | 2 348 | 5.30 | 3.00 |
4 204 | 2 247 | 1 957 | 3.00 | 1.50 |
3 362 | 1 797 | 1 565 | 1.50 | 0.90 |
840 | 449 | 391 | 0.14 | 0.08 |
Tab. 4 New energy power accommodation
总装机 容量/MW | 风电装机 容量/MW | 光伏装机 容量/MW | 弃能率 (按时间)/% | 弃能率 (按发电量)/% |
7 800 | 4 493 | 3 307 | 18.70 | 10.70 |
6 158 | 3 145 | 3 013 | 10.70 | 5.70 |
5 900 | 2 965 | 2 935 | 9.50 | 4.90 |
5 044 | 2 696 | 2 348 | 5.30 | 3.00 |
4 204 | 2 247 | 1 957 | 3.00 | 1.50 |
3 362 | 1 797 | 1 565 | 1.50 | 0.90 |
840 | 449 | 391 | 0.14 | 0.08 |
电动汽车数量/辆 | 新能源类型 | 装机容量/ MW | 新能源舍弃量/(MW·h) | 新能源消纳量/(MW·h) | 新能源舍弃率/% |
5 000 | 风力发电 | 625 | 2 458 | 1 444 863 | 0.17 |
光伏发电 | 1 875 | 7 439 | 5 729 206 | 0.13 | |
风电+光伏 | 2 500 | 19 798 | 7 162 513 | 0.28 | |
10 000 | 风力发电 | 625 | 1 841 | 1 445 481 | 0.12 |
光伏发电 | 1 875 | 7 387 | 5 729 259 | 0.13 | |
风电+光伏 | 2 500 | 19 102 | 7 163 209 | 0.27 | |
15 000 | 风力发电 | 625 | 1 417 | 1 445 904 | 0.10 |
光伏发电 | 1 875 | 7 337 | 5 729 309 | 0.13 | |
风电+光伏 | 2 500 | 18 567 | 7 163 744 | 0.26 |
Tab. 5 Wind/photovoltaic power accommodation
电动汽车数量/辆 | 新能源类型 | 装机容量/ MW | 新能源舍弃量/(MW·h) | 新能源消纳量/(MW·h) | 新能源舍弃率/% |
5 000 | 风力发电 | 625 | 2 458 | 1 444 863 | 0.17 |
光伏发电 | 1 875 | 7 439 | 5 729 206 | 0.13 | |
风电+光伏 | 2 500 | 19 798 | 7 162 513 | 0.28 | |
10 000 | 风力发电 | 625 | 1 841 | 1 445 481 | 0.12 |
光伏发电 | 1 875 | 7 387 | 5 729 259 | 0.13 | |
风电+光伏 | 2 500 | 19 102 | 7 163 209 | 0.27 | |
15 000 | 风力发电 | 625 | 1 417 | 1 445 904 | 0.10 |
光伏发电 | 1 875 | 7 337 | 5 729 309 | 0.13 | |
风电+光伏 | 2 500 | 18 567 | 7 163 744 | 0.26 |
柔性负荷/ MW | 新能源类型 | 装机容量/ MW | 新能源舍弃量/ (MW·h) | 新能源消纳量/ (MW·h) | 新能源舍弃率/% |
50 | 风力发电 | 625 | 3 015 | 1 444 306 | 0.20 |
光伏发电 | 1 875 | 6 904 | 5 729 741 | 0.12 | |
风电+光伏 | 2 500 | 19 273 | 7 163 038 | 0.27 | |
100 | 风力发电 | 625 | 2 874 | 1 444 447 | 0.20 |
光伏发电 | 1 875 | 6 229 | 5 730 416 | 0.11 | |
风电+光伏 | 2 500 | 18 055 | 7 164 256 | 0.25 | |
150 | 风力发电 | 625 | 2 774 | 1 444 547 | 0.20 |
光伏发电 | 1 875 | 5 658 | 5 730 988 | 0.10 | |
风电+光伏 | 2 500 | 17 042 | 7 165 268 | 0.24 |
Tab. 6 Wind/photovoltaic power accommodation under flexible load
柔性负荷/ MW | 新能源类型 | 装机容量/ MW | 新能源舍弃量/ (MW·h) | 新能源消纳量/ (MW·h) | 新能源舍弃率/% |
50 | 风力发电 | 625 | 3 015 | 1 444 306 | 0.20 |
光伏发电 | 1 875 | 6 904 | 5 729 741 | 0.12 | |
风电+光伏 | 2 500 | 19 273 | 7 163 038 | 0.27 | |
100 | 风力发电 | 625 | 2 874 | 1 444 447 | 0.20 |
光伏发电 | 1 875 | 6 229 | 5 730 416 | 0.11 | |
风电+光伏 | 2 500 | 18 055 | 7 164 256 | 0.25 | |
150 | 风力发电 | 625 | 2 774 | 1 444 547 | 0.20 |
光伏发电 | 1 875 | 5 658 | 5 730 988 | 0.10 | |
风电+光伏 | 2 500 | 17 042 | 7 165 268 | 0.24 |
1 | 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015: 158- 159. |
LIU Z Y . Global energy Internet[M]. Beijing: China Electric Power Press, 2015: 158- 159. | |
2 | 任东明. "十三五"可再生能源发展展望[J]. 科技导报, 2016, 34 (1): 133- 138. |
REN D M . Outlook for renewable energy development of 13th Five Year Plan[J]. Science & Technology Review, 2016, 34 (1): 133- 138. | |
3 | 赵良, 白建华, 辛颂旭, 等. 中国可再生能源发展路径研究[J]. 中国电力, 2016, 49 (1): 178- 184. |
ZHAO L , BAI J H , XIN S X , et al. Study on development path of renewable energy in China[J]. Electric Power, 2016, 49 (1): 178- 184. | |
4 | 谢国辉, 李娜娜, 元博. 我国新能源开发路线图分析方法及模型[J]. 发电技术, 2020, 41 (6): 631- 637. |
XIE G H , LI N N , YUAN B , et al. Analysis methods and model of new energy developing roadmap in China[J]. Power Generation Technology, 2020, 41 (6): 631- 637. | |
5 | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37 (1): 1- 9. |
SHU Y B , ZHANG Z G , GUO J B , et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37 (1): 1- 9. | |
6 | 黄龙, 陈皓勇, 钟佳宇, 等. 促进可再生能源消纳的电力市场体系[J]. 广东电力, 2020, 33 (2): 10- 17. |
HUANG L , CHEN H Y , ZHONG J Y , et al. Power market system to promote renewable energy consumption[J]. Guangdong Electric Power, 2020, 33 (2): 10- 17. | |
7 |
戚永志, 黄越辉, 王伟胜, 等. 高比例清洁能源下水风光消纳能力分析方法研究[J]. 电网与清洁能源, 2020, 36 (1): 55- 63.
DOI |
QI Y Z , HUANG Y H , WANG W S , et al. A study on hydro-wind-solar consumption analysis method for high proportion of clean energy[J]. Power System and Clean Energy, 2020, 36 (1): 55- 63.
DOI |
|
8 |
潘旭东, 黄豫, 唐金锐, 等. 新能源发电发展的影响因素分析及前景展望[J]. 智慧电力, 2019, 47 (11): 41- 47.
DOI |
PAN X D , HUANG Y , TANG J R , et al. Influencing factors and prospects for development of renewable energy power generation[J]. Smart Power, 2019, 47 (11): 41- 47.
DOI |
|
9 | 樊国旗, 吕盼, 樊国伟, 等. 退役电池梯次利用对新能源消纳影响的研究[J]. 浙江电力, 2021, 40 (3): 121- 126. |
FAN G Q , LÜ P , FAN G W , et al. Effect of second-use of retired batteries on new energy consumption[J]. Zhejiang Electric Power, 2021, 40 (3): 121- 126. | |
10 |
郑玉平, 王丹, 万灿, 等. 面向新型城镇的能源互联网关键技术与应用[J]. 电力系统自动化, 2019, 43 (14): 1- 15.
DOI |
ZHENG Y P , WANG D , WAN C . Key technology and application of energy internet oriented to new-type towns[J]. Automation of Electric Power Systems, 2019, 43 (14): 1- 15.
DOI |
|
11 | 吕泉, 王伟, 韩水, 等. 基于调峰能力分析的电网弃风情况评估方法[J]. 电网技术, 2013, 37 (7): 1887- 1894. |
LÜ Q , WANG W , HAN B , et al. A new evaluation method for wind power curtailment based on analysis of system regulation capability[J]. Power System Technology, 2013, 37 (7): 1887- 1894. | |
12 |
卫志农, 余爽, 孙国强, 等. 虚拟电厂的概念与发展[J]. 电力系统自动化, 2013, 37 (13): 1- 9.
DOI |
WEI Z N , YU S , SUN G Q , et al. Concept and development of virtual power plant[J]. Automation of Electric Power Systems, 2013, 37 (13): 1- 9.
DOI |
|
13 | BIGNUCOLO F, CALDON R, PRANDONI V, et al. The voltage control on MV distribution networks with aggregated DG units (VPP)[C]//International Universities Power Engineering Conference. IEEE, 2006. |
14 |
ASMUS P . Microgrids, virtual power plants and our distributed energy future[J]. Electricity Journal, 2010, 23 (10): 72- 82.
DOI |
15 | YOU S. Developing virtual power plant for optimized DG operation and integration[D]. Denmark: Technical University of Denmark, 2010. |
16 | YOU S, TRAEHOLT C, POULSEN B. Generic virtual power plants: management of distributed energy resources under liberalized electricity market[C]//International Conference on Advances in Power System Control. IET, 2010. |
17 | 王成山, 李鹏. 分布式能源发展与用户侧电能的高效利用[J]. 电力系统自动化, 2012, 36 (2): 1- 5. |
WANG C S , LI P . Development of distributed energy resources and energy efficiency improvement on customer side[J]. Automation of Electric Power Systems, 2012, 36 (2): 1- 5. | |
18 | 徐天奇, 田业, 高鑫, 等. 新能源全消纳并网友好型虚拟发电厂优化调度研究[J]. 电力工程技术, 2021, 40 (2): 33- 38. |
XU T Q , TIAN Y , GAO X , et al. Optimal dispatching of virtual power plant with new energy power generation full consumption and friendly integration into power grids[J]. Electric Power Engineering Technology, 2021, 40 (2): 33- 38. | |
19 |
胡泽斌, 王进, 王珑, 等. 含储热罐的热-电虚拟电厂双阶段优化调度[J]. 智慧电力, 2019, 47 (11): 79- 85.
DOI |
HU Z B , WANG J , WANG L , et al. Two-stage optimal dispatching of thermal-electric virtual power plant with heat storage tank[J]. Smart Power, 2019, 47 (11): 79- 85.
DOI |
|
20 | 徐佳敏, 孙英云, 孙芊, 等. 虚拟电厂有功调度综合评价指标体系[J]. 电工电能新技术, 2020, 39 (3): 32- 39. |
XU J M , SUN Y Y , SUN Q , et al. A comprehensive evaluation index system of VPP participating in active power dispatching[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39 (3): 32- 39. |
[1] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[2] | Lin LIU, Dalong WANG, Xiao QI, Zhenbo ZHOU, Huanxin LIN, Chuanwei CAI. Study on Double Phase-Locked Loop on the Synthetic Inertia Control of Offshore Wind Farm Frequency Regulation [J]. Power Generation Technology, 2024, 45(2): 282-290. |
[3] | Jie YANG, Zhe SUN, Xinyi SU, Gang LU, Bo YUAN. A Wireless Multi-Objective Power Sharing Method for Energy Storage System in DC Micro-Grid Considering Oscillatory-Type Power [J]. Power Generation Technology, 2024, 45(2): 341-352. |
[4] | Hongjun FU, Shaoxuan ZHU, Buhua WANG, Yan XIE, Haoqing XIONG, Xiaojun TANG, Xiaoyong DU, Chenghao LI, Xiaomeng LI. Risk Prediction Method of Low Frequency Oscillation in Maintenance Power Network Based on Long Short Term Memory Neural Network [J]. Power Generation Technology, 2024, 45(2): 353-362. |
[5] | Hongbo LIU, Shencheng LIU, Xueyang GAI, Yongfa LIU, Yutong YAN. Overview of Active Distribution Network Planning With High Proportion of New Energy Access [J]. Power Generation Technology, 2024, 45(1): 151-161. |
[6] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
[7] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
[8] | Songyuan YU, Junsong ZHANG, Zhiwei YUAN, Fang FANG. Resilience Enhancement Strategy of Combined Heat and Power-Virtual Power Plant Considering Thermal Inertia [J]. Power Generation Technology, 2023, 44(6): 758-768. |
[9] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[10] | Zhonghao QIAN, Jun HU, Sichen SHEN, Ting QIN, Hanyi MA, Xiaodong WANG, Caoyi FENG, Zhinong WEI. Multi-Power Coordinated Optimization Operation Strategy Considering Conditional Value at Risk [J]. Power Generation Technology, 2023, 44(6): 781-789. |
[11] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[12] | Xiaojie PAN, Youping XU, Zhijun XIE, Yukun WANG, Mujie ZHANG, Mengxuan SHI, Kun MA, Wei HU. Power System Transient Stability Preventive Control Optimization Method Driven by Stacking Ensemble Learning [J]. Power Generation Technology, 2023, 44(6): 865-874. |
[13] | Jun JIA, Weihao FAN, Zhipeng LÜ, Jianguang YAO, Shan ZHOU, Jian WANG, Jintao ZHANG. Research on Startup of DC Transformer for Electric Vehicle Cluster Grid-Connection [J]. Power Generation Technology, 2023, 44(6): 875-882. |
[14] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
[15] | Qiuye SUN, Jia YAO, Yifan WANG. From Virtual Power Plant to Real Electricity: Summary and Prospect of Virtual Power Plant Research [J]. Power Generation Technology, 2023, 44(5): 583-601. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||