Power Generation Technology ›› 2022, Vol. 43 ›› Issue (3): 413-420.DOI: 10.12096/j.2096-4528.pgt.21060
• Intelligent Energy • Previous Articles Next Articles
Qingquan LÜ1, Zhenzhen ZHANG1, Yanhong MA2, Jianmei ZHANG1, Pengfei GAO1, Tingting JIANG3, Honglu ZHU3
Received:
2021-11-19
Published:
2022-06-30
Online:
2022-07-06
Supported by:
CLC Number:
Qingquan LÜ, Zhenzhen ZHANG, Yanhong MA, Jianmei ZHANG, Pengfei GAO, Tingting JIANG, Honglu ZHU. Analysis and Research on Output Characteristics of Regional Photovoltaic Power Generation[J]. Power Generation Technology, 2022, 43(3): 413-420.
区域 | 光伏电站 | 最大出力/pu | 出力期望/pu | 半载以上概率 |
---|---|---|---|---|
酒泉 | 电站1 | 0.85 | 0.23 | 0.13 |
电站2 | 0.76 | 0.20 | 0.30 | |
电站3 | 0.73 | 0.20 | 0.12 | |
电站4 | 0.63 | 0.17 | 0.22 | |
电站5 | 0.77 | 0.20 | 0.16 | |
张掖 | 电站6 | 0.73 | 0.20 | 0.19 |
电站7 | 0.75 | 0.20 | 0.19 | |
电站8 | 0.81 | 0.22 | 0.18 | |
电站9 | 0.82 | 0.23 | 0.19 | |
金昌 | 电站10 | 0.76 | 0.20 | 0.19 |
电站11 | 0.74 | 0.20 | 0.19 | |
武威 | 电站12 | 0.74 | 0.17 | 0.21 |
电站13 | 0.91 | 0.30 | 0.32 | |
电站14 | 0.69 | 0.21 | 0.18 | |
白银 | 电站15 | 0.90 | 0.28 | 0.18 |
兰州 | 电站16 | 0.73 | 0.18 | 0.15 |
定西 | 电站17 | 0.69 | 0.17 | 0.12 |
Tab. 1 Output analysis of photovoltaic power stations
区域 | 光伏电站 | 最大出力/pu | 出力期望/pu | 半载以上概率 |
---|---|---|---|---|
酒泉 | 电站1 | 0.85 | 0.23 | 0.13 |
电站2 | 0.76 | 0.20 | 0.30 | |
电站3 | 0.73 | 0.20 | 0.12 | |
电站4 | 0.63 | 0.17 | 0.22 | |
电站5 | 0.77 | 0.20 | 0.16 | |
张掖 | 电站6 | 0.73 | 0.20 | 0.19 |
电站7 | 0.75 | 0.20 | 0.19 | |
电站8 | 0.81 | 0.22 | 0.18 | |
电站9 | 0.82 | 0.23 | 0.19 | |
金昌 | 电站10 | 0.76 | 0.20 | 0.19 |
电站11 | 0.74 | 0.20 | 0.19 | |
武威 | 电站12 | 0.74 | 0.17 | 0.21 |
电站13 | 0.91 | 0.30 | 0.32 | |
电站14 | 0.69 | 0.21 | 0.18 | |
白银 | 电站15 | 0.90 | 0.28 | 0.18 |
兰州 | 电站16 | 0.73 | 0.18 | 0.15 |
定西 | 电站17 | 0.69 | 0.17 | 0.12 |
电站序号 | 正态分布 | Logistic分布 | T-location分布 |
---|---|---|---|
1 | 0.028 | 0.029 | 0.028 |
2 | 0.030 | 0.032 | 0.031 |
3 | 0.047 | 0.058 | 0.384 |
4 | 0.030 | 0.031 | 0.030 |
5 | 0.048 | 0.049 | 0.048 |
6 | 0.030 | 0.031 | 0.030 |
7 | 0.145 | 0.153 | 0.150 |
8 | 0.120 | 0.122 | 0.121 |
9 | 0.032 | 0.033 | 0.032 |
10 | 0.030 | 0.033 | 0.035 |
11 | 0.017 | 0.018 | 0.018 |
12 | 0.080 | 0.086 | 0.084 |
13 | 0.027 | 0.028 | 0.027 |
14 | 0.034 | 0.035 | 0.034 |
15 | 0.014 | 0.015 | 0.015 |
16 | 0.027 | 0.029 | 0.027 |
17 | 0.029 | 0.031 | 0.031 |
Tab. 2 Variance of different fitting methods
电站序号 | 正态分布 | Logistic分布 | T-location分布 |
---|---|---|---|
1 | 0.028 | 0.029 | 0.028 |
2 | 0.030 | 0.032 | 0.031 |
3 | 0.047 | 0.058 | 0.384 |
4 | 0.030 | 0.031 | 0.030 |
5 | 0.048 | 0.049 | 0.048 |
6 | 0.030 | 0.031 | 0.030 |
7 | 0.145 | 0.153 | 0.150 |
8 | 0.120 | 0.122 | 0.121 |
9 | 0.032 | 0.033 | 0.032 |
10 | 0.030 | 0.033 | 0.035 |
11 | 0.017 | 0.018 | 0.018 |
12 | 0.080 | 0.086 | 0.084 |
13 | 0.027 | 0.028 | 0.027 |
14 | 0.034 | 0.035 | 0.034 |
15 | 0.014 | 0.015 | 0.015 |
16 | 0.027 | 0.029 | 0.027 |
17 | 0.029 | 0.031 | 0.031 |
区域 | 酒泉 | 张掖 | 金昌 | 武威 | 白银 | 兰州 |
---|---|---|---|---|---|---|
酒泉 | 1.00 | 0.96 | 0.94 | 0.95 | 0.90 | 0.86 |
张掖 | 0.96 | 1.00 | 0.97 | 0.96 | 0.93 | 0.90 |
金昌 | 0.94 | 0.97 | 1.00 | 0.98 | 0.94 | 0.92 |
武威 | 0.95 | 0.96 | 0.98 | 1.00 | 0.94 | 0.91 |
白银 | 0.90 | 0.93 | 0.94 | 0.93 | 1.00 | 0.95 |
兰州 | 0.86 | 0.90 | 0.92 | 0.91 | 0.95 | 1.00 |
定西 | 0.93 | 0.91 | 0.88 | 0.89 | 0.87 | 0.84 |
Tab. 3 Correlation coefficients of total photovoltaic output among different regions
区域 | 酒泉 | 张掖 | 金昌 | 武威 | 白银 | 兰州 |
---|---|---|---|---|---|---|
酒泉 | 1.00 | 0.96 | 0.94 | 0.95 | 0.90 | 0.86 |
张掖 | 0.96 | 1.00 | 0.97 | 0.96 | 0.93 | 0.90 |
金昌 | 0.94 | 0.97 | 1.00 | 0.98 | 0.94 | 0.92 |
武威 | 0.95 | 0.96 | 0.98 | 1.00 | 0.94 | 0.91 |
白银 | 0.90 | 0.93 | 0.94 | 0.93 | 1.00 | 0.95 |
兰州 | 0.86 | 0.90 | 0.92 | 0.91 | 0.95 | 1.00 |
定西 | 0.93 | 0.91 | 0.88 | 0.89 | 0.87 | 0.84 |
1 | 国家统计局 .中华人民共和国2019年国民经济和社会发展统计公报[EB/OL].(2020-02-28)[2021-04-10]. 913.html. |
National Bureau of Statistics .Statistical bulletin of the People’s Republic of China on national economic and social development 2019[EB/OL].(2020-02-28) [2021-04-10]. 0228_1728913.html. | |
2 | 吴攀 .光伏发电系统发电功率预测[J].发电技术,2020,41(3):231-236. doi:10.12096/j.2096-4528.pgt.19113 |
WU P .Power Forecasting of Photovoltaic Power Generation System[J].Power Generation Technology,2020,41(3):231-236. doi:10.12096/j.2096-4528.pgt.19113 | |
3 | 张慧娥,刘大贵,朱婷婷,等 .基于相似日和动量法优化BP神经网络的光伏短期功率预测研究[J].智慧电力,2021,49(6):46-52. doi:10.3969/j.issn.1673-7598.2021.06.008 |
ZHANG H E, LIU D G, ZHU T T,et al .Short-term PV power prediction based on BP Neural network optimized by similar daily and momentum method[J].Smart Power,2021,49(6):46-52. doi:10.3969/j.issn.1673-7598.2021.06.008 | |
4 | 刘家庆,张弘鹏,郭希海,等 .基于 SVR 残差修正的光伏发电功率预测模型[J].电力工程技术,2020,39(5):146-151. doi:10.12158/j.2096-3203.2020.05.021 |
LIU J Q, ZHANG H P, GUO X H,et al .Prediction model of photovoltaic power generation based on SVR residual correction[J].Electric Power Engineering Technology,2020,39(5):146-151. doi:10.12158/j.2096-3203.2020.05.021 | |
5 | 陈泽雄,张新民,王雪锋,等 .分布式光伏电站接入配电网的分布鲁棒优化配置方法[J].电力系统保护与控制,2021,49(13):30-42. doi:10.19783/j.cnki.pspc.201082 |
CHEN Z X, ZHANG X X, WANG X F,et al .A distributionally robust optimal allocation method for distributed photovoltaic generation stations integrated into a distribution network[J].Power System Protection and Control,2021,49(13):30-42. doi:10.19783/j.cnki.pspc.201082 | |
6 | 杨谦,刘继春,蒋万枭 .光伏不同渗透率下考虑源网荷储深度互动的电力系统调峰策略[J].电力建设,2021,42(9):74-84. doi:10.12204/j.issn.1000-7229.2021.09.008 |
YANG Q, LIU J C, JIANG W X .Peak regulation strategy of power system considering the interaction of source-network-load-storage under different penetration rate of PV[J].Electric Power Construction,2021,42(9):74-84. doi:10.12204/j.issn.1000-7229.2021.09.008 | |
7 | FAN M, VITTAL V, HEYDT T G,et al .Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants[J].IEEE Transactions on Power Systems,2012,27(4):2251-2261. doi:10.1109/tpwrs.2012.2190533 |
8 | 王建学,张耀,万筱钟 .光伏出力特性指标体系和分类典型曲线研究[J].电力需求侧管理,2017,19(5):8-12. doi:10.3969/j.issn.1009-1831.2017.05.002 |
WANG J X, ZHANG Y, WAN X Z .Research of index system and typical curves on photovoltaic power output characteristics[J].Power Demand Side Management,2017,19(5):8-12. doi:10.3969/j.issn.1009-1831.2017.05.002 | |
9 | 郑可轲,牛玉广 .大规模新能源发电基地出力特性研究[J].太阳能学报,2018,39(9):2591-2598. |
ZHENG K K, NIU Y G .Research on renewable power basement output characteristics[J].Acta Energiae Solaris Sinica,2018,39(9):2591-2598. | |
10 | 刘文霞,何向刚,吴方权,等 .新能源发电出力特性指标及其数据化应用[J].电网与清洁能源,2020,36(9):85-92. doi:10.3969/j.issn.1674-3814.2020.09.013 |
LIU W X, HE X G, WU F Q,et al .New energy generation output characteristic Index and its data application[J].Advances of Power System & Hydroelectric Engineering,2020,36(9):85-92. doi:10.3969/j.issn.1674-3814.2020.09.013 | |
11 | 万家豪,苏浩,冯冬涵,等 .计及源荷匹配的风光互补特性分析与评价[J].电网技术,2020,44(9):3219-3226. doi:10.13335/j.1000-3673.pst.2020.0690 |
WAN J H, SU H, FENG D H,et al .Analysis and evaluation of the complementarity characteristics of wind and photovoltaic considering source-load matching[J].Power System Technology,2020,44(9):3219-3226. doi:10.13335/j.1000-3673.pst.2020.0690 | |
12 | 范宏,左路浩,张节潭,等 .考虑光伏出力不确定性的输电网概率潮流计算[J].电力系统及其自动化学报,2017,29(11):111-116. doi:10.3969/j.issn.1003-8930.2017.11.018 |
FAN H, ZUO L H, ZHANG J T,et al .Probability power flow calculation of transmission network considering uncertainty of photovoltaic output[J].Proceedings of the CSU-EPSA,2017,29(11):111-116. doi:10.3969/j.issn.1003-8930.2017.11.018 | |
13 | 田旭,姬生才,张娉,等 .青海光伏与风力发电出力特性研究[J].西北水电,2019,175(2):9-14. doi:10.3969/j.issn.1006-2610.2019.02.001 |
TIAN X, JI S C, ZHANG P,et al .Study on the output characteristics of photovoltaic and wind power generation in Qinghai[J].Northwest Water Power,2019,175(2):9-14. doi:10.3969/j.issn.1006-2610.2019.02.001 | |
14 | 李剑楠,乔颖,鲁宗相,等 .大规模风电多尺度出力波动性的统计建模研究[J].电力系统保护与控制,2012,40(19):7-13. doi:10.3969/j.issn.1674-3415.2012.19.002 |
LI J N, QIAO Y, LU Z X,et al .Research on statistical modeling of large-scale wind farms output fluctuations in different special and temporal scales[J].Power System Protection and Control,2012,40(19):7-13. doi:10.3969/j.issn.1674-3415.2012.19.002 | |
15 | 姜文玲,王勃,汪宁渤,等 .多时空尺度下大型风电基地出力特性研究[J].电网技术,2017,41(2):493-499. doi:10.13335/j.1000-3673.pst.2016.0945 |
JIANG W L, WANG B, WANG N B,et al .Research on power output characteristics of large-scale wind power base in multiple temporal and spatial scales[J].Power System Technology,2017,41(2):493-499. doi:10.13335/j.1000-3673.pst.2016.0945 | |
16 | 马铁东,黄银华,何丽柔 .沿海风电出力同时率的数理统计分析[J].湖南电力,2016(4):18-22. doi:10.3969/j.issn.1008-0198.2016.04.005 |
MA T D, HUANG Y H, HE L R .Mathematical statistics analysis on simultaneity factor of coastal wind power output[J].Hunan Electric Power,2016(4):18-22. doi:10.3969/j.issn.1008-0198.2016.04.005 | |
17 | 蔺红,朱卫 .新疆风电出力特性统计分析及应用[J].电测与仪表,2017,54(20):116-121. doi:10.3969/j.issn.1001-1390.2017.20.020 |
LIN H, ZHU W .Statistics analysis and application of power output characteristics of wind farms in Xinjiang [J].Electrical Measurement & Instrumentation,2017,54(20):116-121. doi:10.3969/j.issn.1001-1390.2017.20.020 |
[1] | Bin ZHAO, Gao LIANG, Menghao JIANG, Gang ZOU, Li WANG. Grid-Connected Power Fluctuation Suppression and Energy Storage Optimization Configuration of Photovoltaic-Energy Storage System [J]. Power Generation Technology, 2024, 45(3): 423-433. |
[2] | Xiaobiao FU, Jiaqi HOU, Baoju LI, Yakun WEN, Xiaowen LAI, Lei GUO, Zhiwei WANG, Yao WANG, Haifeng ZHANG, Dexin LI. A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction [J]. Power Generation Technology, 2024, 45(2): 299-311. |
[3] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[4] | Yanfang LIANG, Shuxuan PENG, Yongjun CUI, Jianchao LUO, Yaonian HE, Linchao BAI, Jinglun FU. Calculation of Heat Transfer Performance of Steam Turbine Shaft Sealing Heater [J]. Power Generation Technology, 2023, 44(6): 817-823. |
[5] | Jian YANG, Yu LIU, Kunpeng HUANG, Yazhou LUO, Siqing NIU, Wei WANG, Jiafei HUAN, Lei ZHANG, Pei ZHANG, Huawei LI. A Method for Estimating Available Power of Wind Farms by Considering the Power Generation Conditions and Station Losses [J]. Power Generation Technology, 2023, 44(2): 235-243. |
[6] | Yao XIAO, Wenze NIU, Gaosheng WEI, Liu CUI, Xiaoze DU. Review on Research Status and Developing Tendency of Solar Photovoltaic/Thermal Technology [J]. Power Generation Technology, 2022, 43(3): 392-404. |
[7] | Yongrui ZHANG, Jie YAN, Aimei LIN, Shuang HAN, Yongqian LIU. Integrated Correction Method of Multi-point Numerical Weather Prediction Wind Speed and Irradiance [J]. Power Generation Technology, 2022, 43(2): 278-286. |
[8] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[9] | Xuewei SONG, Yuyao LIU. Wind and Photovoltaic Generation Scene Division Based on Improved K-means Clustering [J]. Power Generation Technology, 2020, 41(6): 625-630. |
[10] | Zhengling YANG, Ruxue WAGN, Jian QIAO, Xi ZHANG, Zhao YANG, Jun ZHANG. Analysis of the Influence of Atmospheric Pressure Difference on Spatial Correlation Prediction of Wind Speed [J]. Power Generation Technology, 2020, 41(6): 617-624. |
[11] | Wei LIN. The FPGA-Based Customizable Precision Real-Time Time-Frequency Correlation Analyse Algorithm for Transient-Signal Analysis [J]. Power Generation Technology, 2019, 40(1): 1-10. |
[12] | Yujiong GU,Limin CHEN,Zhi GENG. Performance Analysis of ORC System for Non-Zeotropic Mixtures Under Different Solar Energy Sources [J]. Power Generation Technology, 2018, 39(2): 177-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||