Power Generation Technology ›› 2021, Vol. 42 ›› Issue (4): 480-488.DOI: 10.12096/j.2096-4528.pgt.21053
• Intelligent Turbine Power Generation Technology • Previous Articles Next Articles
Jing WANG1(), Jinfu YANG2,*(
), Liqiang DUAN1(
), Liguo TIAN1(
), Yutian JING1(
), Ming YANG1(
)
Received:
2021-05-06
Published:
2021-08-31
Online:
2021-07-22
Contact:
Jinfu YANG
Supported by:
CLC Number:
Jing WANG, Jinfu YANG, Liqiang DUAN, Liguo TIAN, Yutian JING, Ming YANG. Optimal Design of Steam Turbine System for Advanced Ultra-supercritical Double Reheat Coal-fired Units[J]. Power Generation Technology, 2021, 42(4): 480-488.
抽汽级数 | 抽汽压力/MPa | 抽汽温度/℃ | 过热度/℃ | 抽汽级数 | 抽汽压力/MPa | 抽汽温度/℃ | 过热度/℃ | |
1 | 10.240 | 485.05 | 172.47 | 6 | 0.760 | 169.38 | 1.29 | |
2 | 7.570 | 442.23 | 151.20 | 7 | 0.320 | 250.46 | 114.93 | |
3 | 4.140 | 359.07 | 106.68 | 8 | 0.100 | 140.01 | 39.96 | |
4 | 2.610 | 299.57 | 73.44 | 9 | 0.040 | 75.58 | 0.00 | |
5 | 1.640 | 247.32 | 44.91 | 10 | 0.017 | 56.89 | 0.00 |
Tab. 1 Steam extraction parameters of scheme 1
抽汽级数 | 抽汽压力/MPa | 抽汽温度/℃ | 过热度/℃ | 抽汽级数 | 抽汽压力/MPa | 抽汽温度/℃ | 过热度/℃ | |
1 | 10.240 | 485.05 | 172.47 | 6 | 0.760 | 169.38 | 1.29 | |
2 | 7.570 | 442.23 | 151.20 | 7 | 0.320 | 250.46 | 114.93 | |
3 | 4.140 | 359.07 | 106.68 | 8 | 0.100 | 140.01 | 39.96 | |
4 | 2.610 | 299.57 | 73.44 | 9 | 0.040 | 75.58 | 0.00 | |
5 | 1.640 | 247.32 | 44.91 | 10 | 0.017 | 56.89 | 0.00 |
抽汽级数 | 抽汽压力/MPa | 抽汽温度/℃ | 过热度/℃ |
1 | 8.850 | 457.80 | 155.80 |
2 | 6.000 | 402.40 | 126.90 |
3 | 3.700 | 336.40 | 90.70 |
4 | 2.500 | 287.40 | 63.50 |
5 | 1.560 | 234.00 | 33.85 |
6 | 0.810 | 170.80 | 0.80 |
7 | 0.440 | 147.00 | 0.00 |
8 | 0.130 | 354.90 | 247.90 |
9 | 0.064 | 262.90 | 175.30 |
10 | 0.024 | 152.20 | 88.20 |
Tab. 2 Steam extraction parameters of scheme 2
抽汽级数 | 抽汽压力/MPa | 抽汽温度/℃ | 过热度/℃ |
1 | 8.850 | 457.80 | 155.80 |
2 | 6.000 | 402.40 | 126.90 |
3 | 3.700 | 336.40 | 90.70 |
4 | 2.500 | 287.40 | 63.50 |
5 | 1.560 | 234.00 | 33.85 |
6 | 0.810 | 170.80 | 0.80 |
7 | 0.440 | 147.00 | 0.00 |
8 | 0.130 | 354.90 | 247.90 |
9 | 0.064 | 262.90 | 175.30 |
10 | 0.024 | 152.20 | 88.20 |
工况 | 发电煤耗 | 节煤量 | |
700 ℃一次再热机组 | 700 ℃二次再热机组 | ||
THA | 233.66 | 233.50 | 0.15 |
75%THA | 241.67 | 240.49 | 1.17 |
50%THA | 253.37 | 246.14 | 7.23 |
40%THA | 261.72 | 250.02 | 11.70 |
Tab. 3 Coal consumption and coal saving of 700 ℃ units with single and double reheat under different conditions g/(kW·h)
工况 | 发电煤耗 | 节煤量 | |
700 ℃一次再热机组 | 700 ℃二次再热机组 | ||
THA | 233.66 | 233.50 | 0.15 |
75%THA | 241.67 | 240.49 | 1.17 |
50%THA | 253.37 | 246.14 | 7.23 |
40%THA | 261.72 | 250.02 | 11.70 |
工况 | 附加单耗 | 节煤量 | |
700 ℃一次再热机组 | 700 ℃二次再热机组 | ||
THA | 102.84 | 102.27 | 0.57 |
75%THA | 107.92 | 105.34 | 2.58 |
50%THA | 116.52 | 109.34 | 7.18 |
40%THA | 122.6 | 112.11 | 10.49 |
Tab. 4 Additional coal consumption and coal saving of boilers for 700 ℃ units with single and double reheat under different conditions g/(kW·h)
工况 | 附加单耗 | 节煤量 | |
700 ℃一次再热机组 | 700 ℃二次再热机组 | ||
THA | 102.84 | 102.27 | 0.57 |
75%THA | 107.92 | 105.34 | 2.58 |
50%THA | 116.52 | 109.34 | 7.18 |
40%THA | 122.6 | 112.11 | 10.49 |
工况 | 机组 | 附加单耗 | 汽轮机总 附加单耗 | ||||
超高压缸 | 高压缸 | 中压缸 | 低压缸 | 回热汽轮机 | |||
THA | 一次再热 | — | 1.490 | 1.730 | 4.180 | 0.280 | 7.680 |
二次再热 | 1.106 | 0.922 | 1.073 | 2.913 | 0.306 | 6.320 | |
75%THA | 一次再热 | — | 1.180 | 1.760 | 4.070 | 0.260 | 7.270 |
二次再热 | 1.126 | 0.932 | 1.089 | 2.874 | 0.294 | 6.315 | |
50%THA | 一次再热 | — | 2.190 | 1.840 | 3.970 | 0.230 | 8.230 |
二次再热 | 1.131 | 0.937 | 1.110 | 2.742 | 0.272 | 6.193 | |
40%THA | 一次再热 | — | 2.990 | 1.900 | 3.940 | 0.210 | 9.040 |
二次再热 | 1.137 | 0.946 | 1.129 | 2.676 | 0.262 | 6.149 |
Tab. 5 Energy consumption of 700 ℃ units with single and double reheat under different conditions g/(kW·h)
工况 | 机组 | 附加单耗 | 汽轮机总 附加单耗 | ||||
超高压缸 | 高压缸 | 中压缸 | 低压缸 | 回热汽轮机 | |||
THA | 一次再热 | — | 1.490 | 1.730 | 4.180 | 0.280 | 7.680 |
二次再热 | 1.106 | 0.922 | 1.073 | 2.913 | 0.306 | 6.320 | |
75%THA | 一次再热 | — | 1.180 | 1.760 | 4.070 | 0.260 | 7.270 |
二次再热 | 1.126 | 0.932 | 1.089 | 2.874 | 0.294 | 6.315 | |
50%THA | 一次再热 | — | 2.190 | 1.840 | 3.970 | 0.230 | 8.230 |
二次再热 | 1.131 | 0.937 | 1.110 | 2.742 | 0.272 | 6.193 | |
40%THA | 一次再热 | — | 2.990 | 1.900 | 3.940 | 0.210 | 9.040 |
二次再热 | 1.137 | 0.946 | 1.129 | 2.676 | 0.262 | 6.149 |
工况 | 附加单耗 | 节煤量 | |
700 ℃一次再热机组 | 700 ℃二次再热机组 | ||
THA | 2.280 | 2.870 | −0.590 |
75%THA | 2.180 | 2.773 | −0.593 |
50%THA | 2.310 | 2.669 | −0.359 |
40%THA | 2.500 | 2.664 | −0.164 |
Tab. 6 Additional coal consumption of regenerative heater for 700 ℃ units with single and double reheat under different conditions g/(kW·h)
工况 | 附加单耗 | 节煤量 | |
700 ℃一次再热机组 | 700 ℃二次再热机组 | ||
THA | 2.280 | 2.870 | −0.590 |
75%THA | 2.180 | 2.773 | −0.593 |
50%THA | 2.310 | 2.669 | −0.359 |
40%THA | 2.500 | 2.664 | −0.164 |
工况 | 不同抽汽压力下煤耗/[g/(kW·h)] | ||
7.3 MPa | 3.2 MPa | 2.5 MPa | |
THA | 233.50 | 236.23 | 236.11 |
75%THA | 240.49 | 241.38 | 241.35 |
50%THA | 246.14 | 246.56 | 246.43 |
40%THA | 250.02 | 249.98 | 250.45 |
Tab. 7 Coal consumption of 700 ℃ double reheat units under different extraction pressures of BEST
工况 | 不同抽汽压力下煤耗/[g/(kW·h)] | ||
7.3 MPa | 3.2 MPa | 2.5 MPa | |
THA | 233.50 | 236.23 | 236.11 |
75%THA | 240.49 | 241.38 | 241.35 |
50%THA | 246.14 | 246.56 | 246.43 |
40%THA | 250.02 | 249.98 | 250.45 |
1 | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21 (3): 1- 8. |
HU A G . China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21 (3): 1- 8. | |
2 | 全球能源互联网发展合作组织. 中国2030年前碳达峰研究报告[EB/OL]. (2021-03-18)[2021-05-01]. https://max.book118.com/html/2021/0319/7200106100003101.shtm. |
Global Energy Internet Development Cooperation Organization. China's carbon peak research report before 2030[EB/OL]. (2021-03-18)[2021-05-01]. https://max.book118.com/html/2021/0319/7200106100003101.shtm. | |
3 | 龙辉, 黄晶晶. "十三五"燃煤发电设计技术发展方向分析[J]. 发电技术, 2018, 39 (1): 13- 17. |
LONG H , HUANG J J . Development direction analysis of coal-fired power units' design technology during the 13th Five-Year Plan[J]. Power Generation Technology, 2018, 39 (1): 13- 17. | |
4 | 王林, 伍刚, 张亚夫, 等. 1000MW深度调峰机组热力系统优化研究[J]. 发电技术, 2019, 40 (3): 265- 269. |
WANG L , WU G , ZHANG Y F , et al. Thermodynamic system optimization research on 1000MW deep peak-regulating unit[J]. Power Generation Technology, 2019, 40 (3): 265- 269. | |
5 |
刘入维, 肖平, 钟犁, 等. 700℃超超临界燃煤发电技术研究现状[J]. 热力发电, 2017, 46 (9): 1- 7.
DOI |
LIU R W , XIAO P , ZHONG L , et al. Research progress of advanced 700℃ ultra-supercritical coal-fired power generation technology[J]. Thermal Power Generation, 2017, 46 (9): 1- 7.
DOI |
|
6 | 段立强, 孙婧, 王振. 二次再热机组不同抽汽过热度热能利用方案性能比较[J]. 工程热物理学报, 2019, 40 (12): 2757- 2762. |
DUAN L Q , SUN J , WANG Z . Performance comparison of thermal energy utilization schemes of the extractions superheating degree for a double reheat coal-fired power plant[J]. Journal of Engineering Thermophysics, 2019, 40 (12): 2757- 2762. | |
7 |
段立强, 孙婧. 集成回热式汽轮机的超超临界二次再热机组设计优化[J]. 华北电力大学学报, 2019, 46 (3): 80- 89.
DOI |
DUAN L Q , SUN J . Design optimization of ultra-supercritical reheating coal-fired power plant integrated with regenerative steam turbine[J]. Journal of North China Electric Power University, 2019, 46 (3): 80- 89.
DOI |
|
8 | 程辉. 超超临界二次再热1000MW机组回热系统优化[J]. 能源科技, 2020, 18 (2): 47- 50. |
CHENG H . Optimization of regenerative system of 1000MW ultra supercritical double reheat unit[J]. Energy Science and Technology, 2020, 18 (2): 47- 50. | |
9 |
邓攀, 王亚军. BEST技术用于超超临界二次再热机组的可行性分析[J]. 中国电力, 2018, 51 (7): 84- 89.
DOI |
DENG P , WANG Y J . Feasibility analysis on BEST technology for ultra supercritical units with double-reheat cycle[J]. Electric Power, 2018, 51 (7): 84- 89.
DOI |
|
10 |
LI Y Y , ZHOU L Y , XU G , et al. Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant[J]. Energy, 2014, 74, 202- 214.
DOI |
11 | XU G , ZHOU L Y , ZHAO S F , et al. Optimum superheat utilization of extraction steam in double reheat ultra-supercritical power plants[J]. Applied Energy, 2015, (160): 863- 872. |
12 | 周云龙, 杨美, 王迪. 1000MW高超超临界二次再热系统优化[J]. 中国电机工程学报, 2018, 38 (S1): 137- 141. |
ZHOU Y L , YANG M , WANG D . Optimization of 1000MW high ultra-supercritical double-reheat system[J]. Proceedings of the CSEE, 2018, 38 (S1): 137- 141. | |
13 |
YANG M , ZHOU Y L , WANG D , et al. Thermodynamic cycle analysis and optimization to improve efficiency in a 700℃ ultra-supercritical double reheat system[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141, 83- 94.
DOI |
14 | 税杨浩, 刘强, 张磊, 等. 650℃超超临界1000MW机组回热系统的参数优化[J]. 工程热物理学报, 2020, 41 (1): 89- 94. |
SHUI Y H , LIU Q , ZHANG L , et al. Parametric optimization of a regenerative system for a 650℃ ultra-supercritical steam turbine[J]. Journal of Engineering Thermophysics, 2020, 41 (1): 89- 94. | |
15 |
LIN X L , LI Q L , WANG L K , et al. Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW double reheat ultra-supercritical thermal power plant[J]. Energy, 2020, 201, 117560.
DOI |
16 | 阳虹, 余炎, 范世望, 等. 梯次循环(EC)在超超临界1000 MW机组工程应用与分析[J]. 热力发电, 2019, 48 (12): 129- 133. |
YANG H , YU Y , FAN S W , et al. Application and analysis of echelon cycle in ultra supercritical 1000MW unit[J]. Thermal Power Generation, 2019, 48 (12): 129- 133. | |
17 | 王婧, 段立强, 杨金福, 等. 700℃一次再热超超临界机组回热系统节能优化[C]//中国工程热物理学学术会议, 上海, 2020. |
WANG J, DUAN L Q, YANG J F, etc. Energy saving optimization study on regenerative system of 700℃ coal-fired power generation system with single reheat system[C]//China Engineering Thermophysics Conference, Shanghai, 2020. | |
18 | 杨金福, 张忠孝, 韩东江, 等. 新型超临界参数燃煤发电系统结构设计技术[J]. 发电技术, 2019, 40 (6): 555- 563. |
YANG J F , ZHANG Z X , HAN D J , et al. New supercritical parameter coal-fired power generation system structure design technology[J]. Power Generation Technology, 2019, 40 (6): 555- 563. | |
19 | 宋之平. 单耗分析的理论和实施[J]. 中国电机工程学报, 1992, 12 (4): 15- 21. |
SONG Z P . Consumption rate analysis: theory and practice[J]. Proceedings of the CSEE, 1992, 12 (4): 15- 21. | |
20 | 刁美玲, 唐春丽, 朱信, 等. 超超临界二次再热机组热经济性及技术经济性分析[J]. 热力发电, 2017, 46 (8): 23- 29. |
DIAO M L , TANG C L , ZHU X , et al. Thermo-economic and techno-economic analysis on an ultra-supercritical unit with double-reheat cycle[J]. Thermal Power Generation, 2017, 46 (8): 23- 29. | |
21 | 林万超. 火电厂热系统节能理论[M]. 西安: 西安交通大学出版社, 1994: 191- 203. |
LIN W C . Energy-saving theory of thermal power plant thermal system[M]. Xi'an: Xi'an Jiaotong University Press, 1994: 191- 203. | |
22 |
严俊杰, 邵树峰, 李杨, 等. 二次再热超临界机组热力系统经济性定量分析方法[J]. 中国电机工程学报, 2004, 24 (1): 186- 190.
DOI |
YAN J J , SHAO S F , LI Y , et al. A method for analysis the economics of a thermal system in a supercritical pressure power unit with double reheat cycles[J]. Proceedings of the CSEE, 2004, 24 (1): 196- 190.
DOI |
|
23 |
邵树峰, 严俊杰, 刘继平, 等. 二次再热机组热力系统的定量分析方法[J]. 西安交通大学学报, 2003, 37 (11): 1137- 1141.
DOI |
SHAO S F , YAN J J , LIU J P , et al. Thermo-economics analysis method of thermal system for power unit with double reheat[J]. Journal of Xi'an Jiaotong University, 2003, 37 (11): 1137- 1141.
DOI |
[1] | Yanfang LIANG, Shuxuan PENG, Yongjun CUI, Jianchao LUO, Yaonian HE, Linchao BAI, Jinglun FU. Calculation of Heat Transfer Performance of Steam Turbine Shaft Sealing Heater [J]. Power Generation Technology, 2023, 44(6): 817-823. |
[2] | Zhiyun WANG, Yuzhu ZHAO, Xuedong WANG, Yuanshu ZHANG. Experimental Study on Regulation Characteristics of Intermediate Pressure Cylinder Regulating Valves of Heat Supply Steam Turbine Under Peak Regulating Mechanism [J]. Power Generation Technology, 2022, 43(6): 970-976. |
[3] | Honghui SHI, Haibo WANG, Rongxiu CAO, Li YAO, Xin YAN. Research on Aerodynamic and Strength Performance of Last Stage in High-Pressure Cylinder of Steam Turbine Under Variable Working Conditions [J]. Power Generation Technology, 2022, 43(6): 959-969. |
[4] | Qiyao ZUO, Zhen TANG, Huiyong LI, Ying ZHANG, Jiangfeng WANG. Overview on the Current Situation of Steam Turbine Low-Pressure Cylinder Zero-Output Technology Under Background of Power Grid Peak Regulation [J]. Power Generation Technology, 2022, 43(4): 645-654. |
[5] | Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 500-508. |
[6] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[7] | Yunfeng LIU, Yufeng LI, Jian WANG, Yiliang MA, Chun GUAN. Study on Water Erosion in Deep Peak Shaving of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 473-479. |
[8] | Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station [J]. Power Generation Technology, 2021, 42(4): 464-472. |
[9] | Xiaojun HUANG,Xiangguo DU. Effect of 600 MW Supercritical Steam Turbine Prolonging Running Time of Mixing Valve on Unit Vibration [J]. Power Generation Technology, 2019, 40(2): 175-180. |
[10] | Yun LUO,Xuelin CHEN,Ruidong LI,Yongjian SU,Yiwei XU,Junkai CHAO,Pengzhu LI,Haibin REN. Prediction Model and Application of Turbine Regulating Stage Pressure Under Variable Conditions [J]. Power Generation Technology, 2019, 40(2): 161-167. |
[11] | Lihua CAO,Kai ZHOU,Heyong SI. Study on Installing Deflector in Exhaust Hood of Steam Turbine Based on Quadratic Regressive Orthogonal Experiment [J]. Power Generation Technology, 2019, 40(1): 56-60. |
[12] | Chuanling LIU,Minghui LIU,Zhenjiang CHEN,Ang SONG. Analysis on the Change of Steam Turbine Back Pressure Under Operation of Low Pressure Economizer [J]. Power Generation Technology, 2018, 39(4): 378-381. |
[13] | Yi LI. Heat Supply System of 2×300MW Units' Circulating Water Waste Heat [J]. Power Generation Technology, 2018, 39(3): 244-248. |
[14] | WANG Yu, XU Weixuan, GUO Baoren. Vibration Test and Analysis of Dynamic Balancing without Test-mass on Multi-plane for a 350MW Turbo-generator Unit [J]. Power Generation Technology, 2017, 38(6): 53-56. |
[15] | GUO Shuang, WANG Yu, WANG Yan-dong. Process Analysis of a 600MW Subcritical Air-cooled Unit Speed Up to 3000r/min [J]. Power Generation Technology, 2017, 38(1): 48-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||