Power Generation Technology ›› 2020, Vol. 41 ›› Issue (6): 590-598.DOI: 10.12096/j.2096-4528.pgt.19143
• New and Renewable Energy • Previous Articles Next Articles
Yanping ZHANG1(), Yuchao ZHANG2(
), Yifei LIU2
Received:
2020-03-07
Published:
2020-12-31
Online:
2021-01-12
Supported by:
CLC Number:
Yanping ZHANG, Yuchao ZHANG, Yifei LIU. Optimization Design of Trough Solar Power Plant Based on Probabilistic Reliability[J]. Power Generation Technology, 2020, 41(6): 590-598.
项目 | 参数 | 数值 |
气象数据 | 经度/(°) | 91.15 |
纬度/(°) | 29.65 | |
太阳直接辐射量/[(kW∙h)·m−2·d−1] | 7.12 | |
集热系统 | 太阳倍数 | 1~6 |
集热槽行间距/m | 15~31 | |
集热器类型 | Sloargenix SGX-1 | |
镜面反射率 | 0.935 | |
镜面清洁度 | 0.97 | |
集热管类型 | 2008 Schott PTR70 | |
集热管吸收率 | 0.96 | |
集热管透过率 | 0.963 | |
导热工质 | Therminol VP-1 | |
集热场进(出)口温度/℃ | 293(391) | |
发电系统 | 机组净输出功率/MW | 50 |
机组总输出功率/MW | 55 | |
汽轮机组发电效率 | 0.373 6 | |
蓄热系统 | 全负荷当量时间/h | 0~16 |
最大蓄热量/(MW∙h) | 0~2 376.88 | |
热损失/MW | 0.97 |
Tab. 1 Design parameters of trough solar thermal power system
项目 | 参数 | 数值 |
气象数据 | 经度/(°) | 91.15 |
纬度/(°) | 29.65 | |
太阳直接辐射量/[(kW∙h)·m−2·d−1] | 7.12 | |
集热系统 | 太阳倍数 | 1~6 |
集热槽行间距/m | 15~31 | |
集热器类型 | Sloargenix SGX-1 | |
镜面反射率 | 0.935 | |
镜面清洁度 | 0.97 | |
集热管类型 | 2008 Schott PTR70 | |
集热管吸收率 | 0.96 | |
集热管透过率 | 0.963 | |
导热工质 | Therminol VP-1 | |
集热场进(出)口温度/℃ | 293(391) | |
发电系统 | 机组净输出功率/MW | 50 |
机组总输出功率/MW | 55 | |
汽轮机组发电效率 | 0.373 6 | |
蓄热系统 | 全负荷当量时间/h | 0~16 |
最大蓄热量/(MW∙h) | 0~2 376.88 | |
热损失/MW | 0.97 |
性能评价指标 | 允许下限 | 允许上限 |
容量因子/% | 54.60 | — |
LCOE/[美分/(kW∙h)] | — | 17.12[ |
总发电效率/% | 13.5 | — |
Tab. 2 Allowable limits for each key performance indicator
性能评价指标 | 允许下限 | 允许上限 |
容量因子/% | 54.60 | — |
LCOE/[美分/(kW∙h)] | — | 17.12[ |
总发电效率/% | 13.5 | — |
设计参数 | 均值 | 方差 |
太阳倍数 | 1~6 | 0.50 |
蓄热系统蓄热时长/h | 0~16 | 0.90 |
集热槽行间距/m | 15~31 | 2.25 |
Tab. 3 Distribution parameters of each parameter
设计参数 | 均值 | 方差 |
太阳倍数 | 1~6 | 0.50 |
蓄热系统蓄热时长/h | 0~16 | 0.90 |
集热槽行间距/m | 15~31 | 2.25 |
最优指标 | XSM | T/h | D/m | β1 | β2 | β3 |
LCOE | 3.84 | 13.57 | 19.28 | 2.31 | 8.37 | −0.26 |
CF | 6.00 | 15.97 | 29.12 | 10.81 | 2.34 | −3.57 |
η | 2.45 | 15.91 | 30.32 | −0.34 | −0.80 | 6.24 |
Tab. 4 Optimal configuration based on different key performance indicators and its reliability calculation results
最优指标 | XSM | T/h | D/m | β1 | β2 | β3 |
LCOE | 3.84 | 13.57 | 19.28 | 2.31 | 8.37 | −0.26 |
CF | 6.00 | 15.97 | 29.12 | 10.81 | 2.34 | −3.57 |
η | 2.45 | 15.91 | 30.32 | −0.34 | −0.80 | 6.24 |
Fig.9 Cumulative probability and occurrence probability distribution for total generation efficiency of optimal parameter configuration based on capacity factor
Fig.10 Cumulative and occurrence probability distribution for total generation efficiency of optimal parameter configuration based on total generation efficiency
模型 | 优化结果 | 太阳倍数 | 蓄热时长/h | 行间距/m | CF/% | LCOE/[美分/(kW∙h)] | η/% |
确定性模型 | LCOE最优 | 3.88 | 13.58 | 18.50 | 69.36 | 14.05 | 13.90 |
CF最优 | 6.00 | 16.00 | 26.71 | 82.95 | 15.54 | 10.75 | |
η最优 | 2.56 | 16.00 | 27.50 | 51.70 | 16.78 | 15.70 | |
不确定性模型 | LCOE最优 | 3.84 | 13.57 | 19.28 | 65.28 | 14.33 | 13.26 |
CF最优 | 6.00 | 15.97 | 29.12 | 79.28 | 15.67 | 10.50 | |
η最优 | 2.45 | 15.91 | 30.32 | 46.91 | 18.17 | 15.00 |
Tab. 5 Comparison of deterministic and uncertainty model optimization results
模型 | 优化结果 | 太阳倍数 | 蓄热时长/h | 行间距/m | CF/% | LCOE/[美分/(kW∙h)] | η/% |
确定性模型 | LCOE最优 | 3.88 | 13.58 | 18.50 | 69.36 | 14.05 | 13.90 |
CF最优 | 6.00 | 16.00 | 26.71 | 82.95 | 15.54 | 10.75 | |
η最优 | 2.56 | 16.00 | 27.50 | 51.70 | 16.78 | 15.70 | |
不确定性模型 | LCOE最优 | 3.84 | 13.57 | 19.28 | 65.28 | 14.33 | 13.26 |
CF最优 | 6.00 | 15.97 | 29.12 | 79.28 | 15.67 | 10.50 | |
η最优 | 2.45 | 15.91 | 30.32 | 46.91 | 18.17 | 15.00 |
1 | 佟锴, 杨立军, 宋记锋, 等. 聚光太阳能集热场先进技术综述[J]. 发电技术, 2019, 40 (5): 413- 425. |
TONG K , YANG L J , SONG J F , et al. Review on advanced technology of concentrated solar power concentrators[J]. Power Generation Technology, 2019, 40 (5): 413- 425. | |
2 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 230. |
ZHANG Z Y , JU X , PAN X Y , et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41 (3): 220- 230. | |
3 | 赵明智, 张晓明, 宋士金, 等. 槽式太阳能热发电系统太阳倍数和蓄热时长的选取方法研究[J]. 太阳能技术产品与工程, 2015, (6): 50- 54. |
ZHAO M Z , ZHANG X M , SONG S J , et al. Study on the selection method of solar multiple and heat storage duration of trough solar thermal power generation system[J]. Solar Technology Products and Engineering, 2015, (6): 50- 54. | |
4 |
李然, 封春菲, 田增华. 槽式太阳能热发电站系统配置的经济性分析[J]. 电力勘测设计, 2015, (1): 71- 75.
DOI |
LI R , FENG C F , TIAN Z H . Economic analysis of system configuration of trough solar thermal power station[J]. Electric Power Survey and Design, 2015, (1): 71- 75.
DOI |
|
5 |
IZQUIERDO S , MONTAÑŚ C , DOPAZO C , et al. Analysis of CSP plants for the definition of energy policies:the influence on electricity cost of solar multiples, capacity factors and energy storage[J]. Energy Policy, 2010, 38 (10): 6215- 6221.
DOI |
6 |
HU M , CHO H . A probability constrained multi-objective optimization model for CCHP system operation decision support[J]. Applied Energy, 2014, 116, 230- 242.
DOI |
7 |
HANAK D P , KOLIOS A J , BILIYOK C , et al. Probabilistic performance assessment of a coal-fired power plant[J]. Applied Energy, 2015, 139, 350- 364.
DOI |
8 | 牛文娟, 李扬, 王蓓蓓. 考虑不确定性的需求响应虚拟电厂建模[J]. 中国电机工程学报, 2014, 34 (22): 3630- 3637. |
NIU W J , LI Y , WANG B B . Modeling of demand response virtual power plant considering uncertainty[J]. Proceedings of the CSEE, 2014, 34 (22): 3630- 3637. | |
9 | FREY H C , RUBIN E S . Probabilistic evaluation of advanced SO2/NOx control technology[J]. Journal of the Air & Waste Management Association, 1991, 41 (12): 1585- 1593. |
10 | KURUP P, TURCHI C.Parabolic trough collector cost update for the system advisor model (SAM)[R]. Golden, Colorado, USA: National Renewable Energy Laboratory, 2015. |
11 | TURCHI C, HEATH G.Molten salt power tower cost model for the system advisor model[R].Golden, Colorado, USA: National Renewable Energy Laboratory, 2013. |
12 |
BOUKELIA T E , MECIBAH M S , KUMAR B N , et al. Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions[J]. Energy Conversion and Management, 2015, 101, 450- 459.
DOI |
13 | 王慧富, 吴玉庭, 张晓明. 槽式太阳能热发电站的模拟优化[J]. 太阳能学报, 2018, 39 (7): 1788- 1796. |
WANG H F , WU Y T , ZHANG X M . Simulation and optimization of trough solar thermal power station[J]. Acta Energiae Solaris Sinica, 2018, 39 (7): 1788- 1796. | |
14 | 国家发展改革委.关于太阳能热发电标杆上网电价政策的通知[Z].北京: 国家发展改革委, 2016. |
National Development and Reform Commission. Notice on the benchmarking on-grid tariff policy for solar thermal power generation[Z].Beijing: National Development and Reform Commission, 2016. | |
15 |
段楠, 薛会民, 潘越. 用蒙特卡洛法计算可靠度时模拟次数的选择[J]. 煤矿机械, 2002, (3): 13- 14.
DOI |
DUAN N , XUE H M , PAN Y . The choice of simulation times when calculating reliability by Monte Carlo method[J]. Coal Mine Machinery, 2002, (3): 13- 14.
DOI |
|
16 | HELTON J, DAVIS F.Sampling-based methods for uncertainty and sensitivity analysis[R].USA: Sandia National Laboratories, 2000. |
17 | WYSS G, JORGENSEN K.A user's guide to LHS: Sandia's Latin hypercube sampling software[R].USA: Sandia National Laboratories, 1998. |
[1] | Jianqiang YE, Dunhu SUN. Research on Power Planning Based on Robust Optimization Under Carbon Trading Condition [J]. Power Generation Technology, 2024, 45(3): 566-574. |
[2] | Xiaobiao FU, Jiaqi HOU, Baoju LI, Yakun WEN, Xiaowen LAI, Lei GUO, Zhiwei WANG, Yao WANG, Haifeng ZHANG, Dexin LI. A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction [J]. Power Generation Technology, 2024, 45(2): 299-311. |
[3] | Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks [J]. Power Generation Technology, 2024, 45(2): 323-330. |
[4] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[5] | Zhan LIU, Yanyang BAO, Dazi LI. Fault Diagnosis Method of Wind Turbines Based on Wide Deep Convolutional Neural Network With Resampling and Principal Component Analysis [J]. Power Generation Technology, 2023, 44(6): 824-832. |
[6] | Zhigang LUO, Chengbing HE, Haoran MENG, Guodong LIU, Peng SHEN, Jun ZHANG, Haoliang ZHANG. Research on Optimization Method of Precise Ammonia Injection in SCR de-NO x System of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(4): 525-533. |
[7] | Jingcheng SU, Zhiqiang WANG, Jiangjiang QU, Kai ZHANG. Pressure Difference Prediction of Air Preheater in Coal-Fired Power Plant Based on BP Neural Network and Support Vector Regression [J]. Power Generation Technology, 2023, 44(4): 550-556. |
[8] | Jizhen AN, Fuhao ZHENG, Yifan LIU, Heng CHEN, Gang XU. Study on Induced Draft Fan Fault Warning of Thermal Power Unit Based on Big Data Analysis [J]. Power Generation Technology, 2023, 44(4): 557-564. |
[9] | Lifeng ZHANG, Jing LI, Zhi WANG. Reconstruction of Temperature Distribution by Acoustic Tomography Based on Principal Component Analysis and Deep Neural Network [J]. Power Generation Technology, 2023, 44(3): 399-406. |
[10] | Guangde DONG, Daoming LI, Yongtao CHEN, Xing MA, Ang FU, Gang MU, Bai XIAO. Power Quality Disturbance Classification Method Based on Particle Swarm Optimization and Convolutional Neural Network [J]. Power Generation Technology, 2023, 44(1): 136-142. |
[11] | Yongrui ZHANG, Jie YAN, Aimei LIN, Shuang HAN, Yongqian LIU. Integrated Correction Method of Multi-point Numerical Weather Prediction Wind Speed and Irradiance [J]. Power Generation Technology, 2022, 43(2): 278-286. |
[12] | Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine [J]. Power Generation Technology, 2022, 43(1): 139-146. |
[13] | Yaguang LI, Meng LI. Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network [J]. Power Generation Technology, 2021, 42(3): 313-321. |
[14] | Shubang HUANG, Yao CHEN, Yuqing JIN. A Multi-channel Feature Combination Model for Ultra-short-term Wind Power Prediction Under Carbon Neutral Background [J]. Power Generation Technology, 2021, 42(1): 60-68. |
[15] | Jiaxin WEN, Siqi BU, Qiyu CHEN, Bowen ZHOU. Data Learning-based Frequency Risk Assessment in a High-penetrated Renewable Power System [J]. Power Generation Technology, 2021, 42(1): 40-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||