Power Generation Technology ›› 2023, Vol. 44 ›› Issue (2): 201-212.DOI: 10.12096/j.2096-4528.pgt.22001
• Energy Storage • Previous Articles Next Articles
Xuebo GUO1, Liangchi FAN1, Zhenjing XU1, You LI2, Jun LIN3, Lin CHEN1
Received:
2022-03-01
Published:
2023-04-30
Online:
2023-04-28
Supported by:
CLC Number:
Xuebo GUO, Liangchi FAN, Zhenjing XU, You LI, Jun LIN, Lin CHEN. Research and Application Progress of Phase Change Thermal Energy Storage Materials for Energy Saving and Carbon Reduction[J]. Power Generation Technology, 2023, 44(2): 201-212.
金属合金相变材料 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 固态热导率/[W/(m·K)] |
---|---|---|---|---|
Mg-24.9Zn-5.1Al | 340 | 157.0 | 2 820 | 59 |
Zn-11.3Al | 382 | 118.0 | 6 752 | 133 |
Al-34Mg | 450 | 310.0 | 2 300 | 80 |
Al-33.2Cu | 548 | 351.0 | 3 424 | 130 |
Al-12Si | 576 | 560.0 | 2 700 | 160 |
Cu-20Si | 802 | 352.2 | — | 371 |
Tab. 1 Physical properties of metal and alloy phase change materials
金属合金相变材料 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 固态热导率/[W/(m·K)] |
---|---|---|---|---|
Mg-24.9Zn-5.1Al | 340 | 157.0 | 2 820 | 59 |
Zn-11.3Al | 382 | 118.0 | 6 752 | 133 |
Al-34Mg | 450 | 310.0 | 2 300 | 80 |
Al-33.2Cu | 548 | 351.0 | 3 424 | 130 |
Al-12Si | 576 | 560.0 | 2 700 | 160 |
Cu-20Si | 802 | 352.2 | — | 371 |
熔盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
硝酸钠 | 310 | 174.0 | 2 260 | 0.50 |
氢氧化钾 | 380 | 149.7 | 2 044 | 0.50 |
溴化钠-55溴化镁 | 431 | 212.0 | 3 490 | 0.90 |
碳酸锂-53碳酸钾 | 488 | 342.0 | 2 200 | 1.99 |
氯化钠-67氯化钙 | 500 | 281.0 | 1 900 | 1.02 |
氟化钠-21氟化钾-62碳酸钾 | 520 | 274.0 | 2 380 | 1.50 |
Tab. 2 Physical properties of high temperature molten salts
熔盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
硝酸钠 | 310 | 174.0 | 2 260 | 0.50 |
氢氧化钾 | 380 | 149.7 | 2 044 | 0.50 |
溴化钠-55溴化镁 | 431 | 212.0 | 3 490 | 0.90 |
碳酸锂-53碳酸钾 | 488 | 342.0 | 2 200 | 1.99 |
氯化钠-67氯化钙 | 500 | 281.0 | 1 900 | 1.02 |
氟化钠-21氟化钾-62碳酸钾 | 520 | 274.0 | 2 380 | 1.50 |
水合盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
二水合氟化钾 | 18.5 | 231 | 1 447 | — |
六水合氯化钙 | 29.5 | 170 | 1 680 | 1.088 |
十水合碳酸钠 | 34.0 | 251 | 1 440 | — |
十二水合磷酸氢二钠 | 36.5 | 264 | 1 520 | 0.514 |
三水合醋酸钠 | 58.0 | 265 | 1 450 | — |
六水合硝酸镁 | 90.0 | 160 | 1 460 | 0.669 |
六水合氯化镁 | 116.7 | 169 | 1 570 | 0.704 |
Tab. 3 Physical properties of hydrated salts
水合盐 | 相变温度/℃ | 熔融焓/(kJ/kg) | 密度/(kg/m3) | 热导率/[W/(m·K)] |
---|---|---|---|---|
二水合氟化钾 | 18.5 | 231 | 1 447 | — |
六水合氯化钙 | 29.5 | 170 | 1 680 | 1.088 |
十水合碳酸钠 | 34.0 | 251 | 1 440 | — |
十二水合磷酸氢二钠 | 36.5 | 264 | 1 520 | 0.514 |
三水合醋酸钠 | 58.0 | 265 | 1 450 | — |
六水合硝酸镁 | 90.0 | 160 | 1 460 | 0.669 |
六水合氯化镁 | 116.7 | 169 | 1 570 | 0.704 |
导热填料 | 填料质量分数/% | 热导率/ [W/(m⋅K)] | 参考文献 |
---|---|---|---|
铜粉 | 9.68 | 0.513 | [ |
银纳米线 | 19.30 | 0.680 | [ |
碳纳米管 | 34.00 | 0.464 | [ |
氧化石墨烯(石墨烯) | 0.45(1.80) | 1.430 | [ |
氧化石墨烯(氮化硼) | 4.00(30.00) | 3.000 | [ |
多孔碳化土豆 | 14.64 | 4.489 | [ |
Tab. 4 Relevant data of thermally reinforced PEG composite phase change materials
导热填料 | 填料质量分数/% | 热导率/ [W/(m⋅K)] | 参考文献 |
---|---|---|---|
铜粉 | 9.68 | 0.513 | [ |
银纳米线 | 19.30 | 0.680 | [ |
碳纳米管 | 34.00 | 0.464 | [ |
氧化石墨烯(石墨烯) | 0.45(1.80) | 1.430 | [ |
氧化石墨烯(氮化硼) | 4.00(30.00) | 3.000 | [ |
多孔碳化土豆 | 14.64 | 4.489 | [ |
1 | 陈国平,董昱,梁志峰 .能源转型中的中国特色新能源高质量发展分析与思考[J].中国电机工程学报,2020,40(17):5493-5506. doi:10.13334/j.0258-8013.pcsee.200984 |
CHEN G P, DONG Y, LIANG Z F .Analysis and reflection on high-quality development of new energy with chinese characteristics in energy transition[J].Proceedings of the CSEE,2020,40(17):5493-5506. doi:10.13334/j.0258-8013.pcsee.200984 | |
2 | ZHANG D, WANG J, LIN Y,et al .Present situation and future prospect of renewable energy in China[J].Renewable and Sustainable Energy Reviews,2017,76:865-871. doi:10.1016/j.rser.2017.03.023 |
3 | 丁峰,李晓刚,梁泽琪,等 .国外可再生能源发展经验及其对我国相关扶持政策的启示[J].电力建设,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 |
DING F, LI X G, LIANG Z Q,et al .Review of foreign experience in promoting renewable energy development and inspiration to China[J].Electric Power Construction,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 | |
4 | 刘沅昆,张维静,张艳,等 .面向新型电力系统的新能源与储能联合规划方法[J].智慧电力,2022,50(10):1-8. doi:10.3969/j.issn.1673-7598.2022.10.002 |
LIU R K, ZHANG W J, ZHANG Y,et al .Joint planning method of renewable energy and energy storage for new-type power system[J].Smart Power,2022,50(10):1-8. doi:10.3969/j.issn.1673-7598.2022.10.002 | |
5 | 马锐,李相俊,李文启,等 .可再生能源供电区域电网中储能系统协同调度策略[J].发电技术,2021,42(1):31-39. doi:10.12096/j.2096-4528.pgt.20027 |
MA R, LI X J, LI W Q,et al .Cooperative scheduling strategy of energy storage systems for regional grid supplied by renewable energy[J].Power Generation Technology,2021,42(1):31-39. doi:10.12096/j.2096-4528.pgt.20027 | |
6 | YUAN K, SHI J, AFTAB W,et al .Engineering the thermal conductivity of functional phase-change materials for heat energy conversion,storage,and utilization[J].Advanced Functional Materials,2019,30(8):1-31. doi:10.1002/adfm.201904228 |
7 | 和萍,宫智杰,靳浩然,等 .高比例可再生能源电力系统调峰问题综述[J].电力建设,2022,43(11):108-121. doi:10.12204/j.issn.1000-7229.2022.11.011 |
HE P, GONG Z J, JIN H R,et al .Review of peak-shaving problem of electric power system with high proportion of renewable energy[J].Electric Power Construction,2022,43(11):108-121. doi:10.12204/j.issn.1000-7229.2022.11.011 | |
8 | OLABI A G .Renewable energy and energy storage systems[J].Energy,2017,136:1-6. doi:10.1016/j.energy.2017.07.054 |
9 | 李昭,李宝让,陈豪志,等 .相变储热技术研究进展[J].化工进展,2020,39(12):5066-5085. |
LI Z, LI B R, CHEN H Z,et al .State of the art review on phase change thermal energy storage technology[J].Chemical Industry and Engineering Progress,2020,39(12):5066-5085. | |
10 | 王泽旭,李冰辰,许瑶,等 .基于过冷相变材料热开关的锂离子电池热管理系统[J].发电技术,2022,43(2):328-340. doi:10.12096/j.2096-4528.pgt.21058 |
WANG Z X, LI B C, XU Y,et al .Lithium-ion battery thermal management system based on the combination of supercooled phase change material and thermal switch[J].Power Generation Technology,2022,43(2):328-340. doi:10.12096/j.2096-4528.pgt.21058 | |
11 | GRACIA A, CABEZA L F .Phase change materials and thermal energy storage for buildings[J].Energy and Buildings,2015,103:414-419. doi:10.1016/j.enbuild.2015.06.007 |
12 | MIRÓ L, GASIA J, CABEZA L F .Thermal energy storage (TES) for industrial waste heat (IWH) recovery:a review[J].Applied Energy,2016,179:284-301. doi:10.1016/j.apenergy.2016.06.147 |
13 | MOFIJUR M, MAHLIA T, SILITONGA A,et al .Phase change materials (PCM) for solar energy usages and storage:an overview[J].Energies,2019,12(16):3167. doi:10.3390/en12163167 |
14 | 刘霞,匡勇,钱振,等 .电池热管理用相变储能材料的研究进展[J].储能科学与技术,2015,4(4):365-373. doi:10.3969/j.issn.2095-4239.2015.04.004 |
LIU X, KUANG Y, QIAN Z,et al .Review on phase change materials based battery thermal management technology[J].Energy Storage Science and Technology,2015,4(4):365-373. doi:10.3969/j.issn.2095-4239.2015.04.004 | |
15 | 李滨红,赵天宇 .相变储热技术用于被动式建筑节能的研究进展[J].中国住宅设施,2020(10):113-114. |
LI B H, ZHAO T Y .Research progress of phase change heat storage technology for energy saving in passive buildings[J].China Housing Facilities,2020(10):113-114. | |
16 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J,et al .Recent developments in phase change materials for energy storage applications:a review[J].International Journal of Heat and Mass Transfer,2019,129:491-523. doi:10.1016/j.ijheatmasstransfer.2018.09.126 |
17 | XU B, LI P, CHAN C .Application of phase change materials for thermal energy storage in concentrated solar thermal power plants:a review to recent developments[J].Applied Energy,2015,160:286-307. doi:10.1016/j.apenergy.2015.09.016 |
18 | 廖志荣,李朋达,田紫芊,等 .非均匀翅片对级联相变储热系统热性能强化的研究[J].发电技术,2022,43(1):83-91. doi:10.12096/j.2096-4528.pgt.20114 |
LIAO Z R, LI P D, TIAN Z Q,et al .Heat Transfer enhancement of a cascaded latent heat thermal energy storage system by fins with different uneven layouts[J].Power Generation Technology,2022,43(1):83-91. doi:10.12096/j.2096-4528.pgt.20114 | |
19 | UMAIR M M, ZHANG Y, IQBAL K,et al .Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage:a review[J].Applied Energy,2019,235:846-873. doi:10.1016/j.apenergy.2018.11.017 |
20 | WEI G, WANG G, XU C,et al .Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage:a review[J].Renewable and Sustainable Energy Reviews,2018,81:1771-1786. doi:10.1016/j.rser.2017.05.271 |
21 | 孙正,程晓敏,朱教群,等 .Mg基高温相变储热共晶合金熔化相变焓的研究[J].功能材料,2017,48(2):2236-2240. doi:10.3969/j.issn.1001-9731.2017.02.045 |
SUN Z, CHENG X M, ZHU J Q,et al .Study on enthalpy of melting phase transition of Mg-based eutectic alloys at high temperature[J].Journal of Functional Materials,2017,48(2):2236-2240. doi:10.3969/j.issn.1001-9731.2017.02.045 | |
22 | LIN Y, ALVA G, FANG G .Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J].Energy,2018,165:685-708. doi:10.1016/j.energy.2018.09.128 |
23 | QIN Y, LENG G H, YU X,et al .Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J].Powder Technology,2015,282:37-42. doi:10.1016/j.powtec.2014.08.075 |
24 | DENG Y, LI J, QIAN T,et al .Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J].Journal of Materials Science & Technology,2017,33(2):198-203. doi:10.1016/j.jmst.2016.02.011 |
25 | LIU M, GOMEZ J C, TURCHI C S,et al .Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications[J].Solar Energy Materials and Solar Cells,2015,139:81-87. doi:10.1016/j.solmat.2015.03.014 |
26 | 周园,李翔,海春喜,等 .水合盐相变储能材料研究[J].盐湖研究,2018,26(2):9-15. |
ZHOU Y, LI X, HAI C X,et al .Research on hydrated salt phase change energy storage materials[J].Journal of Salt Lake Research,2018,26(2):9-15. | |
27 | TANG Y R, GAO D L, GUO Y F,et al .Supercooling and phase separation of inorganic salt hydrates as PCMs[J].Applied Mechanics and Materials,2011,71/78:2602-2605. doi:10.4028/www.scientific.net/amm.71-78.2602 |
28 | SHANG B, HU J, HU R,et al .Modularized thermal storage unit of metal foam/paraffin composite[J].International Journal of Heat and Mass Transfer,2018,125:596-603. doi:10.1016/j.ijheatmasstransfer.2018.04.117 |
29 | LUO D J, WEI F J, SHAO H J,et al .Shape stabilization,thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials[J].Journal of Materials Science,2018,53(22):15500-15513. doi:10.1007/s10853-018-2722-5 |
30 | YUAN Y, ZHANG N, TAO W,et al .Fatty acids as phase change materials:a review[J].Renewable and Sustainable Energy Reviews,2014,29:482-498. doi:10.1016/j.rser.2013.08.107 |
31 | FU X, ZHANG Y, KONG W,et al .Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage[J].Journal of Thermal Analysis and Calorimetry,2016,128(2):643-651. doi:10.1007/s10973-016-5959-8 |
32 | 张俊博,金旭,刘忠彦,等 .吸收式热泵余热回收先进技术综述[J].发电技术,2020,41(3):269-280. doi:10.12096/j.2096-4528.pgt.19170 |
ZHANG J B, JIN X, LIU Z Y,et al .Review on advanced technology for waste heat recovery of absorption heat pump[J].Power Generation Technology,2020,41(3):269-280. doi:10.12096/j.2096-4528.pgt.19170 | |
33 | MAGRO F, SAVINO S, MENEGHETTI A,et al .Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry[J].Energy,2017,137:1107-1118. doi:10.1016/j.energy.2017.04.051 |
34 | 郭璞维,彭跃,邓靖敏,等 .烟气余热回收与储能技术耦合应用的可行性研究[J].华电技术,2021,43(9):62-68. doi:10.3969/j.issn.1674-1951.2021.09.008 |
GUO P W, PENG Y, DENG J M,et al .Feasibility study on coupling application of flue gas waste heat recovery and energy storage technology[J].Huadian Technology,2021,43(9):62-68. doi:10.3969/j.issn.1674-1951.2021.09.008 | |
35 | XU H, ROMAGNOLI A, SZE J Y,et al .Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery[J].Applied Energy,2017,187:281-290. doi:10.1016/j.apenergy.2016.11.070 |
36 | 魏高升,邢丽婧,杜小泽,等 .太阳能热发电系统相变储热材料选择及研发现状 [J].中国电机工程学报,2014,34(3):325-335. |
WEI G S, XING L J, DU X Z,et al .Research status and selection of phase change thermal energy storage materials for CSP systems[J].Proceedings of the CSEE,2014,34(3):325-335. | |
37 | MAHFUZ M H, KAMYAR A, AFSHAR O,et al .Exergetic analysis of a solar thermal power system with PCM storage[J].Energy Conversion and Management,2014,78:486-492. doi:10.1016/j.enconman.2013.11.016 |
38 | SHEN J, ZHU Y, YANG X,et al .One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[J].New Journal of Chemistry,2012,36(1):97-101. doi:10.1039/c1nj20658c |
39 | YANG J, TANG L S, BAO R Y,et al .Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets[J].Chemical Engineering Journal,2017,315:481-490. doi:10.1016/j.cej.2017.01.045 |
40 | LI M, WANG C .Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials[J].Renewable Energy,2019,141:1005-1012. doi:10.1016/j.renene.2019.03.141 |
41 | 李勇琦,郑耀东,董缇,等 .退役锂离子动力电池储能系统风冷热管理仿真[J].电力系统保护与控制,2021,49(12):8-15. |
LI Y Q, ZHENG Y D, DONG T,et al .Wind cooling heat management simulation of a retired lithium ion battery energy storage system[J].Power System Protection and Control,2021,49(12):8-15. | |
42 | 李泽群,杨建国 .石墨/石蜡相变材料在电池热管理中的应用 [J].电源技术,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 |
LI Z Q, YANG J G .Application of graphite/paraffin phase change materials in thermal management of batteries[J].Chinese Journal of Power Sources,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 | |
43 | HEYHAT M M, MOUSAVI S, SIAVASHI M .Battery thermal management with thermal energy storage composites of PCM,metal foam,fin and nanoparticle[J].Journal of Energy Storage,2020,28:1-14. doi:10.1016/j.est.2020.101235 |
44 | JAVANI N, DINCER I, NATERER G F,et al .Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J].International Journal of Heat and Mass Transfer,2014,72:690-703. doi:10.1016/j.ijheatmasstransfer.2013.12.076 |
45 | WU W, YANG X, ZHANG G,et al .Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J].Energy Conversion and Management,2017,138:486-92. doi:10.1016/j.enconman.2017.02.022 |
46 | 张燕 .中国建筑节能潜力及政策体系研究[D].北京:北京理工大学,2015. |
ZHANG Y .Researh on potential and policy system of building energy efficiency in China[D].Beijing:Beijing Insitute of Technology,2015. | |
47 | ZHANG Y P, LIN K P, YANG R,et al .Preparation,thermal performance and application of shape-stabilized PCM in energy efficient buildings[J].Energy and Buildings,2006,38(10):1262-1269. doi:10.1016/j.enbuild.2006.02.009 |
48 | XU T, CHEN Q, ZHANG Z,et al .Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material[J].Building and Environment,2016,104:172-177. doi:10.1016/j.buildenv.2016.05.003 |
49 | ZHANG X G, WEN R L, TANG C,et al .Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application[J].Energy and Buildings,2016,130:113-121. doi:10.1016/j.enbuild.2016.08.049 |
50 | 孙晓阳 .脂肪酸-脂肪醇/膨胀珍珠岩复合相变建筑储热材料的制备及性能研究[D].西安:西安建筑科技大学,2020. |
SUN X Y .Preparation and properties of fatty acid-fatty alcohol/expanded perlite composite phase change building heat storage materials[D].Xi’an:Xi’an University of Architecture and Technology,2020. | |
51 | DU Y, LIU P, QUAN X,et al .Characterization and cooling effect of a novel cement-based composite phase change material[J].Solar Energy,2020,208:573-582. doi:10.1016/j.solener.2020.07.083 |
52 | FARRELL A J, NORTON B, KENNEDY D M .Corrosive effects of salt hydrate phase change materials used with aluminium and copper[J].Journal of Materials Processing Technology,2006,175(1/3):198-205. doi:10.1016/j.jmatprotec.2005.04.058 |
53 | SUNDARARAJAN S, SAMUI A B, KULKARNI P S .Shape-stabilized poly (ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending[J].Solar Energy,2017,144:32-39. doi:10.1016/j.solener.2016.12.056 |
54 | WU B, JIANG Y, WANG Y,et al .Study on a PEG/epoxy shape-stabilized phase change material:Preparation,thermal properties and thermal storage performance[J].International Journal of Heat and Mass Transfer,2018,126:1134-1142. doi:10.1016/j.ijheatmasstransfer.2018.05.153 |
55 | ALKAN C, SARI A, UZUN O .Poly (ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage[J].AIChE Journal,2006,52(9):3310-3314. doi:10.1002/aic.10928 |
56 | ZHANG L, ZHU J, ZHOU W,et al .Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method[J].Thermochimica Acta,2011,524(1/2):128-134. doi:10.1016/j.tca.2011.07.003 |
57 | SHEN J, ZHANG P, SONG L,et al .Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material[J].Composites Part B:Engineering,2019,179:1-10. doi:10.1016/j.compositesb.2019.107545 |
58 | TANG L S, YANG J, BAO R Y,et al .Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide[J].Energy Conversion and Management,2017,146:253-264. doi:10.1016/j.enconman.2017.05.037 |
59 | LIU Z, TANG B, ZHANG S .Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy[J].Solar Energy Materials and Solar Cells,2020,216:1-7. doi:10.1016/j.solmat.2020.110678 |
60 | QURESHI Z A, ALI H M, KHUSHNOOD S .Recent advances on thermal conductivity enhancement of phase change materials for energy storage system:a review[J].International Journal of Heat and Mass Transfer,2018,127:838-856. doi:10.1016/j.ijheatmasstransfer.2018.08.049 |
61 | ZHANG X, HUANG Z, MA B,et al .Polyethylene glycol/Cu/SiO2 form stable composite phase change materials:preparation,characterization,and thermal conductivity enhancement[J].RSC Advances,2016,6(63):58740-58748. doi:10.1039/c6ra12890d |
62 | DENG Y, LI J, QIAN T,et al .Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J].Chemical Engineering Journal,2016,295:427-435. doi:10.1016/j.cej.2016.03.068 |
63 | WANG J, HUANG X, GAO H,et al .Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J].Chemical Engineering Journal,2018,350:164-172. doi:10.1016/j.cej.2018.05.190 |
64 | YANG J, QI G-Q, LIU Y,et al .Hybrid graphene aerogels/phase change material composites:thermal conductivity,shape-stabilization and light-to-thermal energy storage[J].Carbon,2016,100:693-702. doi:10.1016/j.carbon.2016.01.063 |
65 | YANG J, TANG L S, BAO R Y,et al .Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability[J].Solar Energy Materials and Solar Cells,2018,174:56-64. doi:10.1016/j.solmat.2017.08.025 |
66 | ZHAO Y, MIN X, HUANG Z,et al .Honeycomb-like structured biological porous carbon encapsulating PEG:a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage[J].Energy and Buildings,2018,158:1049-1062. doi:10.1016/j.enbuild.2017.10.078 |
67 | MORENO P, MIRÓ L, SOLÉ A,et al .Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications[J].Applied Energy,2014,125:238-245. doi:10.1016/j.apenergy.2014.03.022 |
68 | 孟令然,郭立江,李晓禹,等 .水合盐相变储能材料的研究进展[J].储能科学与技术,2017,6(4):623-632. |
MENG L R, GUO L J, LI X Y,et al .Salt hydrate based phase change materials for thermal energy storage:a review[J].Energy Storage Science and Technology,2017,6(4):623-632. | |
69 | 李玉婷,周永全,葛飞,等 .无机水合盐相变储能材料的过冷及相分离研究进展[J].盐湖研究,2018,26(1):81-86. |
LI Y T, ZHOU Y Q, GE F,et al .Research progress on undercooling and phase separation of inorganic hydrated salt phase change energy storage materials[J].Journal of Salt Lake Research,2018,26(1):81-86. | |
70 | SARVGHAD M, WILL G, STEINBERG T A .Corrosion of Inconel 601 in molten salts for thermal energy storage[J].Solar Energy Materials and Solar Cells,2017,172:220-229. doi:10.1016/j.solmat.2017.07.036 |
71 | 丁祥彬,孙华,俞国军,等 .Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J].中国腐蚀与防护学报,2015,35(6):543-548. |
DING X B, SUN H, YU G J,et al .Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF[J].Journal of Chinese Society for Corrosion and Protection,2015,35(6):543-548. | |
72 | 赵峥峥,王遥,刘斌,等 .三元混合氯化盐NaCl-KCl-MgCl2对合金的腐蚀特性实验研究[J].发电技术,2018,39(6):561-565. doi:10.12096/j.2096-4528.pgt.18221 |
ZHAO Z Z, WANG Y, LIU B,et al .Experimental study on corrosion characteristics of ternary mixed chloride salt NaCl-KCl-MgCl2 [J].Power Generation Technology,2018,39(6):561-565. doi:10.12096/j.2096-4528.pgt.18221 |
[1] | Dan ZHOU, Zhi YUAN, Ji LI, Wei FAN. An Advanced Fuzzy Control Strategy for Hybrid Energy Storage Systems Considering Smoothing of Wind Power Fluctuations at Future Moments [J]. Power Generation Technology, 2024, 45(3): 412-422. |
[2] | Bin ZHAO, Gao LIANG, Menghao JIANG, Gang ZOU, Li WANG. Grid-Connected Power Fluctuation Suppression and Energy Storage Optimization Configuration of Photovoltaic-Energy Storage System [J]. Power Generation Technology, 2024, 45(3): 423-433. |
[3] | Junhui LI, Guohang CHEN, Teng MA, Cuiping LI, Xingxu ZHU, Chen JIA. Optimal Control Strategy of Peak Shaving of Flow Battery Energy Storage System Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(3): 434-447. |
[4] | Xiuxiun HAN, Shaoxin WEI, Jian WANG, Chaojie CUI, Weizhong QIAN. Preparation and Performance Analysis of High Performance Cathode Material Graphene-Mesoporous Carbon Composites for Lithium-Ion Capacitor [J]. Power Generation Technology, 2024, 45(3): 494-507. |
[5] | Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU. Energy Storage Configuration Considering the System Wind Power Reserve Capacity Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(2): 260-272. |
[6] | Zhihua CHEN, Mengkai YOU, Wei CAI, Jingwei HU, Xing HU, Aifang ZHANG, Kejie ZHANG, Wei WANG. Comprehensive Evaluation Model of Energy Storage Power Station With Full Life Cycle [J]. Power Generation Technology, 2023, 44(6): 883-888. |
[7] | Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry [J]. Power Generation Technology, 2023, 44(3): 296-304. |
[8] | Junjie KANG, Chunyang ZHAO, Guopeng ZHOU, Liang ZHAO. Research on Development Status and Implementation Path of Wind-Solar-Water-Thermal-Energy Storage Multi-Energy Complementary Demonstration Project [J]. Power Generation Technology, 2023, 44(3): 407-416. |
[9] | Zhenzhen YE, Xinqi CHEN, Shuting ZHANG, Jian WANG, Chaojie CUI, Gang ZHANG, Lei ZHANG, Luming QIAN, Ying JIN, Weizhong QIAN. Long Period Operation of Ionic Liquid Based Electrical Double Layer Capacitor at 45 ℃ and 3 V [J]. Power Generation Technology, 2023, 44(2): 213-220. |
[10] | Yibo HAO, Xili DU, Xiaozhu LI, Laijun CHEN. Shared Energy Storage Trading Mode of New Energy Station Group Considering Energy Storage Performance Difference [J]. Power Generation Technology, 2022, 43(5): 687-697. |
[11] | Qing GU, Rui LI, Xu CAI, Baochang XIE. Topology and Control Method of Battery Energy Storage System for Application at the Scale of Hundreds of Megawatts [J]. Power Generation Technology, 2022, 43(5): 698-706. |
[12] | Long HUO, Yubao ZHANG, Xin CHEN. Artificial Intelligence Applications in Distributed Energy Storage Technologies [J]. Power Generation Technology, 2022, 43(5): 707-717. |
[13] | Xiaoguang CHEN, Xiuyuan YANG, Zhenlin WANG, Haoyang WANG. Energy Storage Capacity Allocation Scheme of Wind Farm Considering Multi-Objective Optimization Model [J]. Power Generation Technology, 2022, 43(5): 718-730. |
[14] | Shaoxin WEI, Ying JIN, Jin WANG, Zhoufei YANG, Chaojie CUI, Weizhong QIAN. Prospect for Development Trend of Battery-Capacitor Technology [J]. Power Generation Technology, 2022, 43(5): 748-759. |
[15] | Zehang LI, Hao ZHOU, Haomiao LI, Kangli WANG, Kai JIANG. Liquid Metal Battery Energy Storage Technology for Power System [J]. Power Generation Technology, 2022, 43(5): 760-774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||