Power Generation Technology ›› 2022, Vol. 43 ›› Issue (2): 236-248.DOI: 10.12096/j.2096-4528.pgt.22025
• Offshore Wind Power Generation Technology • Previous Articles Next Articles
Jianing ZHU1, Shitan ZHANG1, Weichun GE2, Chuang LIU1, Shuai CHU3
Received:
2022-02-05
Published:
2022-04-30
Online:
2022-05-13
Supported by:
CLC Number:
Jianing ZHU, Shitan ZHANG, Weichun GE, Chuang LIU, Shuai CHU. Overview of Offshore Wind Power Transmission and Power Transportation Technology[J]. Power Generation Technology, 2022, 43(2): 236-248.
对比项 | 高压交流输电系统 | 高压直流输电系统 | 架空线路输电 系统 | 运输电池 | |
---|---|---|---|---|---|
LCC-HVDC | VSC-HVDC | ||||
投资成本 | 电站投资较少,但电缆投资较高。海上升压站成本约50万元/MW,交流电缆成本约880万元/km[ | 电站投资较高,但电缆投资最低。海上换流站成本约350万元/MW,直流电缆成本约550万元/km[ | 电站投资最高,电缆投资较高。海上换流站成本约350万元/MW,直流电缆成本约550万元/km[ | 远低于海缆线路, 线路成本约 320万元/km[ | 投资成本较低,约 380万元/艘[ |
运行费用 | 年运行费用相对较高 | 年运行费用相对较低,运行费率为1.8%[ | 年运行费用相对较低,运行费率为1.8%[ | 年运行费用相对适中,占总成本的2%[ | 运行费用相对适中,轮船油耗费用约400元/km[ |
维护成本 | 交流海缆输电系统年维护成本占总投资成本的1.2%[ | 直流海缆输电系统年维护成本占总投资成本的0.5%[ | 直流海缆输电系统年维护成本占总投资成本的0.5%[ | 年维护成本占总投资成本的3%[ | 船舶维护成本占总投资成本的0.2%[ |
损耗费用 | 年线路损耗约占1% | 功耗仅为0.7%,两端换流站损耗为1%~2%[ | 损耗功率约占1.6%[ | 年线路损耗较低 | 损耗费用较高,轮船的 损耗费用约占总投资 成本的9%[ |
应用情况 | 近海风电场 | 远海风电场 | 远海风电场 | 潮间带风电送出、近海风电送出及深海风电近岸侧 | 无 |
安全程度 | 相对于直流较低 | 相对适中 | 高 | 相对较低 | 相对较高 |
传输容量 | 400 MW(200 kV), 800 MW(400 kV)[ | 最大1 600 MW[ | 350 MW、500 MW已建,最高可达1 100 MW | 不受传输容量限制 | 锂离子电池0~80 MW[ |
Tab. 1 Comparison of indexes of various electric energy transmission modes
对比项 | 高压交流输电系统 | 高压直流输电系统 | 架空线路输电 系统 | 运输电池 | |
---|---|---|---|---|---|
LCC-HVDC | VSC-HVDC | ||||
投资成本 | 电站投资较少,但电缆投资较高。海上升压站成本约50万元/MW,交流电缆成本约880万元/km[ | 电站投资较高,但电缆投资最低。海上换流站成本约350万元/MW,直流电缆成本约550万元/km[ | 电站投资最高,电缆投资较高。海上换流站成本约350万元/MW,直流电缆成本约550万元/km[ | 远低于海缆线路, 线路成本约 320万元/km[ | 投资成本较低,约 380万元/艘[ |
运行费用 | 年运行费用相对较高 | 年运行费用相对较低,运行费率为1.8%[ | 年运行费用相对较低,运行费率为1.8%[ | 年运行费用相对适中,占总成本的2%[ | 运行费用相对适中,轮船油耗费用约400元/km[ |
维护成本 | 交流海缆输电系统年维护成本占总投资成本的1.2%[ | 直流海缆输电系统年维护成本占总投资成本的0.5%[ | 直流海缆输电系统年维护成本占总投资成本的0.5%[ | 年维护成本占总投资成本的3%[ | 船舶维护成本占总投资成本的0.2%[ |
损耗费用 | 年线路损耗约占1% | 功耗仅为0.7%,两端换流站损耗为1%~2%[ | 损耗功率约占1.6%[ | 年线路损耗较低 | 损耗费用较高,轮船的 损耗费用约占总投资 成本的9%[ |
应用情况 | 近海风电场 | 远海风电场 | 远海风电场 | 潮间带风电送出、近海风电送出及深海风电近岸侧 | 无 |
安全程度 | 相对于直流较低 | 相对适中 | 高 | 相对较低 | 相对较高 |
传输容量 | 400 MW(200 kV), 800 MW(400 kV)[ | 最大1 600 MW[ | 350 MW、500 MW已建,最高可达1 100 MW | 不受传输容量限制 | 锂离子电池0~80 MW[ |
设备 | 费用 |
---|---|
直流线路 | 550万元/km |
交流线路 | 1 500万元/km |
架空线路 | 318.02万元/km |
海上换流站 | 350万元/MW |
海上升压站 | 50万元/MW |
船舶 | 383.28万元/艘 |
集装箱 | 120万元/个 |
锂电池 | 3.07万元/个 |
Tab. 2 Economic parameters of each transmission mode
设备 | 费用 |
---|---|
直流线路 | 550万元/km |
交流线路 | 1 500万元/km |
架空线路 | 318.02万元/km |
海上换流站 | 350万元/MW |
海上升压站 | 50万元/MW |
船舶 | 383.28万元/艘 |
集装箱 | 120万元/个 |
锂电池 | 3.07万元/个 |
1 | 肖先勇,郑子萱 .“双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J].工程科学与技术,2022,54(1):47-59. |
XIAO X Y, ZHENG Z X .New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality:contribution,key techniques,and challenges[J].Advanced Engineering Sciences,2022,54(1):47-59. | |
2 | 侯金鸣,孙蔚,肖晋宇,等 .电力系统关键技术进步与低碳转型的协同优化[J/OL].电力系统自动化:1-12[2022-01-02].. doi:10.7500/AEPS20210223001 |
HOU J M, SUN W, XIAO J Y,et al .Collaborative optimization of key technology progress and low carbon transition of power system[J/OL].Automation of Electric Power Systems:1-12[2022-01-02].. doi:10.7500/AEPS20210223001 | |
3 | 黄晶 .中国 2060 年实现碳中和目标亟需强化科技支 撑[J].可持续发展经济导刊,2020(10):15-16. doi:10.3390/su132011138 |
HUANG J .China’s goal of carbon neutrality by 2060 needs to be reinforced by science and technology[J].China Sustainability Tribune,2020(10):15-16. doi:10.3390/su132011138 | |
4 | 朱凯,张艳红.“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 |
ZHU K, ZHANG Y H .Research on application of hydrogen in power industry under“double carbon”circumstance[J].Power Generation Technology,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 | |
5 | 梁作宾,高山,王庆,等 .低碳背景下基于自适应鲁棒优化的含源配电系统规划方法[J].电网与清洁能源,2021,37(12):70-80. doi:10.3969/j.issn.1674-3814.2021.12.010 |
LIANG Z B, GAO S, WANG Q,et al .A planning method for the source-containing distribution system based on adaptive robust optimization under low-carbon background[J].Power System and Clean Energy,2021,37(12):70-80. doi:10.3969/j.issn.1674-3814.2021.12.010 | |
6 | 王秀丽,赵勃扬,郑伊俊,等 .海上风力发电及送出技术与就地制氢的发展概述[J].浙江电力,2021,40(10):3-12. |
WANG X L, ZHAO B Y, ZHENG Y J,et al .A general survey of offshore wind power generation and transmission technologies and local hydrogen production[J].Zhejiang Electric Power,2021,40(10):3-12. | |
7 | 童光毅 .基于双碳目标的智慧能源体系构建[J].智慧电力,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 |
TONG G Y .Construction of smart energy system based on dual carbon goal[J].Smart Power,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 | |
8 | 赵春生,杨君君,王婧,等 .燃煤发电行业低碳发展路径研究[J].发电技术,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 |
ZHAO C S, YANG J J, WANG J,et al .Research on low-carbon development path of coal-fired power industry[J].Power Generation Technology,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 | |
9 | 秦垚,王晗,庄圣伦,等 .海上风电场集电网的高频谐振分析[J/OL].中国电机工程学报:1-15[2022-01-02].. |
QIN Y, WANG H, ZHUANG S L,et al .Analysis on high frequency resonance of collector network in offshore wind farm[J/OL].Proceedings of the CSEE:1-15[2022-01-02].. | |
10 | 迟永宁,梁伟,张占奎,等 .大规模海上风电输电与并网关键技术研究综述[J].中国电机工程学报,2016,36(14):3758-3771. doi:10.13334/j.0258-8013.pcsee.152756 |
CHI Y N, LIANG W, ZHANG Z K,et al .An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J].Proceedings of the CSEE,2016,36(14):3758-3771. doi:10.13334/j.0258-8013.pcsee.152756 | |
11 | 卿子龙,孔庆香 .海上风电场智慧型监控管理一体化系统[J].分布式能源,2021,6(5):59-63. |
QING Z L, KONG Q X .Intelligent integrated monitoring and management system for offshore wind farm[J].Distributed Energy,2021,6(5):59-63. | |
12 | 杨大业,项祖涛,罗煦之,等 .永磁型风机海上风电送出系统甩负荷故障暂时过电压影响因素分析[J].发电技术,2022,43(1):111-118. doi:10.12096/j.2096-4528.pgt.20033 |
YANG D Y, XIANG Z T, LUO X Z,et al .Analysis on influence factors of temporary overvoltage of load rejection fault of offshore wind power transmission system of permanent magnet synchronous generator[J].Power Generation Technology,2022,43(1):111-118. doi:10.12096/j.2096-4528.pgt.20033 | |
13 | 王锡凡,卫晓辉,宁联辉,等 .海上风电并网与输送方案比较[J].中国电机工程学报,2014,34(31):5459-5466. |
WANG X F, WEI X H, NING L H,et al .Integration Techniques and Transmission Schemes for Off-shore Wind Farms[J].Proceedings of the CSEE,2014,34(31):5459-5466. | |
14 | 刘卫东,李奇南,王轩,等 .大规模海上风电柔性直流输电技术应用现状和展望[J].中国电力,2020,53(7):55-71. |
LIU W D, LI Q N, WANG X,et al .Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J].Electric Power,2020,53(7):55-71. | |
15 | 蔡旭,施刚,迟永宁,等 .海上全直流型风电场的研究现状与未来发展[J].中国电机工程学报,2016,36(8):2036-2048. |
CAI X, SHI G, CHI Y N,et al .Present status and future development of offshore all-DC wind farm[J].Proceedings of the CSEE,2016,36(8):2036-2048. | |
16 | 孟沛彧,向往,邸世民,等 .大规模海上风电多电压等级混合级联直流送出系统[J].电力系统自动化,2021,45(21):120-128. doi:10.7500/AEPS20210425008 |
MENG P Y, XIANG W, DI S M,et al .Hybrid cascaded HVDC transmission system with multiple voltage levels for large-scale offshore wind power[J].Automation of Electric Power Systems,2021,45(21):120-128. doi:10.7500/AEPS20210425008 | |
17 | 刘亚磊,李兴源,曾琦,等 .多端多电平柔性直流系统在海上风电场中的应用[J].电力系统保护与控制,2013,41(21):9-14. doi:10.7667/j.issn.1674-3415.2013.21.002 |
LIU Y L, LI X Y, ZENG Q,et al .VSC-MTDC system based on MMC for offshore wind farms[J].Power System Protection and Control,2013,41(21):9-14. doi:10.7667/j.issn.1674-3415.2013.21.002 | |
18 | 谭振龙,张伶俐,陈希,等 .远海大容量机组海上风电集电系统技术经济研究[J].电气应用,2021,40(6):64-71. |
TAN Z L, ZHANG L L, CHEN X,et al .Techno-economic study on collection systems of large capacity turbines for offshore wind power[J].Electrotechnical Application,2021,40(6):64-71. | |
19 | 曹善军,王金雷,吴小钊,等 .海上风电送出技术研究浅述[J].电工电气,2020(9):66-69. doi:10.3969/j.issn.1007-3175.2020.09.015 |
CAO S J, WANG J L, WU X Z,et al .Brief introduction of offshore wind power delivery technology research[J].Electrotechnics Electric,2020(9):66-69. doi:10.3969/j.issn.1007-3175.2020.09.015 | |
20 | 王锡凡,王碧阳,王秀丽,等 .面向低碳的海上风电系统优化规划研究[J].电力系统自动化,2014,38(17):4-13. doi:10.7500/AEPS20140324013 |
WANG X F, WANG B Y, WU X Z,et al .Research on optimization planning of low-carbon offshore wind power system[J].Automation of Electric Power Systems,2014,38(17):4-13. doi:10.7500/AEPS20140324013 | |
21 | 姚钢,杨浩猛,周荔丹,等 .大容量海上风电机组发展现状及关键技术[J].电力系统自动化,2021,45(21):33-47. doi:10.7500/AEPS20210416003 |
YAO G, YANG H M, ZHOU L D,et al .Development status and key technologies of large-capacity offshore wind turbines[J].Automation of Electric Power Systems,2021,45(21):33-47. doi:10.7500/AEPS20210416003 | |
22 | 张开华,张智伟,王婧倩,等 .海上风电场输电系统选择[J].太阳能,2019(2):56-60. doi:10.3969/j.issn.1003-0417.2019.02.012 |
ZHANG K H, ZHANG Z W, WANG J Q,et al .Offshore wind power transmission system selection[J].Solar Energy,2019(2):56-60. doi:10.3969/j.issn.1003-0417.2019.02.012 | |
23 | 黄明煌,王秀丽,刘沈全,等 .分频输电应用于深远海风电并网的技术经济性分析[J].电力系统自动化,2019,43(5):167-174. |
HUANG M H, WANG X L, LIU S Q,et al .Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J].Automation of Electric Power Systems,2019,43(5):167-174. | |
24 | 崔刚 .锂电池的海上安全运输与管理[J].天津航海,2018(1):33-35. doi:10.3969/j.issn.1005-9660.2018.01.012 |
CUI G .The maritime safe carriage and management of lithium battery[J].Tianjin Navigation,2018(1):33-35. doi:10.3969/j.issn.1005-9660.2018.01.012 | |
25 | 王彦兵,王晴晴,肖华,等 .锂离子电池运输检测标准UN 38.3及空海运鉴定书分析[J].中国标准化,2021(23):232-236. |
WANG Y B, WANG Q Q, XIAO H,et al .Analysis of lithium-ion battery transportation testing standard UN 38.3 and report for safe transport of goods[J].China Standardization,2021(23):232-236. | |
26 | 杜海超 .海上风电场输电方式的经济性分析[J].黑龙江电力,2014,36(6):515-517. doi:10.3969/j.issn.1002-1663.2014.06.010 |
DU H C .Economic analysis of transmission mode of offshore wind farm[J].Heilongjiang Electric Power,2014,36(6):515-517. doi:10.3969/j.issn.1002-1663.2014.06.010 | |
27 | 张占奎,石文辉,屈姬贤,等 .大规模海上风电并网送出策略研究[J].中国工程科学,2021,23(4):182-190. doi:10.15302/j-sscae-2021.04.021 |
ZHANG Z K, SHI W H, QU J X,et al .Grid connection and transmission scheme of large-scale offshore wind power[J].Strategic Study of CAE,2021,23(4):182-190. doi:10.15302/j-sscae-2021.04.021 | |
28 | 李兴源,曾琦,王渝红,等 .柔性直流输电系统控制研究综述[J].高电压技术,2016,42(10):3025-3037. |
LI X Y, ZENG Q, WANG Y H,et al .Control strategies of voltage source converter based direct current transmission system[J].High Voltage Engineering,2016,42(10):3025-3037. | |
29 | 沈周丽,李锐华,胡波 .基于负序电压前馈的改进型柔性直流输电系统有功功率控制策略[J].电气技术,2021,22(11):1-6. doi:10.3969/j.issn.1673-3800.2021.11.001 |
SHEN Z L, LI R H, HU B .Improved active power control strategy of voltage source converter based high voltage direct current transmission system based on negative sequence voltage feedforward[J].Electrical Engineering,2021,22(11):1-6. doi:10.3969/j.issn.1673-3800.2021.11.001 | |
30 | 姚伟,熊永新,姚雅涵,等 .海上风电柔直并网系统调频控制综述[J].高电压技术,2021,47(10):3397-3413. |
YAO W, XIONG Y X, YAO Y H,et al .Review on frequency modulation control of offshore wind power flexible direct grid connection system[J].High Voltage Engineering,2021,47(10):3397-3413. | |
31 | 蒋向兵,汤波,余光正,等 .面向新能源就地消纳的园区储能与电价协调优化方法[J].电力系统自动化,2022,46(5):51-64. doi:10.7500/AEPS20210601004 |
JIANG X B, TANG B, YU G Z,et al .Coordination and optimization method of park energy storage and electricity price for local consumption of renewable energy[J].Automation of Electric Power Systems,2022,46(5):51-64. doi:10.7500/AEPS20210601004 | |
32 | 赵爱云 .储能电池平抑风电功率波动控制策略及容量优化[D].青岛:青岛大学,2019. |
ZHAO A Y .Control Strategy and capacity optimization of energy storage battery to suppress wind power fluctuation[D].Qingdao:Qingdao University,2019. | |
33 | 王秀丽,赵勃扬,黄明煌,等 .大规模深远海风电送出方式比较及集成设计关键技术研究[J].全球能源互联网,2019,2(2):138-145. |
WANG X L, ZHAO B Y, HUANG M H,et al .Research of integration methods comparison and key design technologies for large scale long distance offshore wind power[J].Journal of Global Energy Interconnection,2019,2(2):138-145. | |
34 | 黄伟捷,江岳文.远海风电输电和制氢经济可行性分析[J].中国电力,2022,55(1):91-100. |
HUANG W J, JIANG Y W .Comparison of economic feasibilities between power transmission and hydrogen production from an offshore wind farm[J].Electric Power,2022,55(1):91-100. | |
35 | 徐政,程斌杰 .不同电压等级直流输电的适用性研究[J].电力建设,2015,36(9):22-29. doi:10.3969/j.issn.1000-7229.2015.09.004 |
XU Z, CHENG B J .Applicability study on DC transmission with different voltage levels[J].Electric Power Construction,2015,36(9):22-29. doi:10.3969/j.issn.1000-7229.2015.09.004 | |
36 | 程斌杰,徐 政,宣耀伟,等 .海底交直流电缆输电系统经济性比较[J].电力建设,2014,35(12):131-136. doi:10.3969/j.issn.1000-7229.2014.12.023 |
CHENG B J, XU Z, XUAN Y W,et al .Economic comparison of AC /DC power transmission system for submarine cables[J].Electric Power Construction,2014,35(12):131-136. doi:10.3969/j.issn.1000-7229.2014.12.023 | |
37 | 徐进,韦古强,金逸,等 .江苏如东海上风电场并网方式及经济性分析[J].高电压技术,2017,43(1):74-81. |
XU J, WEI G Q, JIN Y,et al .Economic analysis on integration topology of Rudong offshore wind farm in Jiangsu province[J].High Voltage Engineering,2017,43(1):74-81. | |
38 | 田甜,李怡雪,黄磊,等 .海上风电制氢技术经济性对比分析[J].电力建设,2021,42(12):136-144. |
TIAN T, LI Y X, HUANG L,et al .Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J].Electric Power Construction,2021,42(12):136-144. | |
39 | 滕炜 .海运企业船舶运输成本控制研究[D].广州:暨南大学,2005. |
TENG W .Study on ship transportation cost control of shipping company[D].Guangzhou:Jinan University,2005. | |
40 | 李飞飞,王亮,齐立忠,等 .海上风电典型送出方案技术经济比较研究[J].电网与清洁能源,2014,30(11):140-144. doi:10.3969/j.issn.1674-3814.2014.11.028 |
LI F F, WANG L, QI L Z,et al .Technical and economical comparisons of typical transmission schemes of the offshore wind farm[J].Power System and Clean Energy,2014,30(11):140-144. doi:10.3969/j.issn.1674-3814.2014.11.028 | |
41 | 靳雯皓,刘继春 .平滑风电功率波动的混合储能系统容量优化配置[J].分布式能源,2017,2(2):32-38. |
JIN W H, LIU J C .Capacity optimization configuration of hybrid energy storage system for smoothing wind power fluctuation[J].Distributed Energy,2017,2(2):32-38. | |
42 | 王锡凡,刘沈全,宋卓彦,等 .分频海上风电系统的技术经济分析[J].电力系统自动化,2015,39(3):43-50. doi:10.7500/AEPS20140121007 |
WANG X F, LIU S Q, SONG Z Y,et al .Technical and economical analysis on offshore wind power system integrated via fractional frequency transmission system[J].Automation of Electric Power Systems,2015,39(3):43-50. doi:10.7500/AEPS20140121007 | |
43 | 马为民,吴方劼,杨一鸣,等 .柔性直流输电技术的现状及应用前景分析[J].高电压技术,2014,40(8):2429-2439. doi:10.13336/j.1003-6520.hve.2014.08.025 |
MA W M, WU F J, YANG Y J,et,al .Flexible HVDC transmission technology’s today and tomorrow[J].High Voltage Engineering,2014,40(8):2429-2439. doi:10.13336/j.1003-6520.hve.2014.08.025 | |
44 | 李亚男,蒋维勇,余世峰,等 .舟山多端柔性直流输电工程系统设计[J].高电压技术,2014,40(8):2490-2496. |
LI Y N, JIANG W Y, YU S F,et al .System design of Zhoushan multi-terminal VSC-HVDC transmission project[J].High Voltage Engineering,2014,40(8):2490-2496. | |
45 | 徐政 .柔性直流输电系统[M].北京:机械工业出版社,2013. |
XU Z .Flexible direct current transmission system[M].Beijing:China Machine Press,2013. | |
46 | 罗煜,黄梅,鲍谚,等 .基于储能SOC优化控制的风储电站实时跟踪发电计划控制策略[J].电工技术学报,2016,31(S1):214-220. |
LUO Y, HUANG M, BAO Y,et al .Tracking power generation real-time schedule strategy for wind power and battery energy storage combined System Based on SOC Optimal Control of Battery Energy Storage[J].Transactions of China Electrotechnical Society,2016,31(S1):214-220. | |
47 | 娄素华,杨天蒙,吴耀武,等 .含高渗透率风电的电力系统复合储能协调优化运行[J].电力系统自动化,2016,40(7):30-35. doi:10.7500/AEPS20150906011 |
LOU S H, YANG T M, WU Y W,et al .Coordinated optimal operation of hybrid energy storage in power system accommodated high penetration of wind power[J].Automation of Electric Power Systems,2016,40(7):30-35. doi:10.7500/AEPS20150906011 | |
48 | 朱信龙,王均毅,潘加爽,等 .集装箱储能系统热管理系统的现状及发展[J].储能科学与技术,2022,11(1):107-118. |
ZHU X L, WANG J Y, PAN J H,et al .Present situation and development of thermal management system for battery energy storage system[J].Energy Storage Science and Technology,2022,11(1):107-118. | |
49 | 辛保安,郭铭群,王绍武,等 .适应大规模新能源友好送出的直流输电技术与工程实践[J].电力系统自动化,2021,45(22):1-8. |
XIN B A, GUO M Q, WANG S W,et al .Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J].Automation of Electric Power Systems,2021,45(22):1-8. | |
50 | 王鑫,王海云,王维庆 .大规模海上风电场电力输送方式研究[J].电测与仪表,2020,57(22):55-62. |
WANG X, WANG H Y, WANG W Q .Research on power transmission mode of large-scale offshore wind farms[J].Electrical Measurement & Instrumentation,2020,57(22):55-62. | |
51 | 江道灼,谷泓杰,尹瑞,等 .海上直流风电场研究现状及发展前景[J].电网技术,2015,39(9):2424-2431. |
JIANG D Z, GU H J, YIN R,et al .Research status and developing prospect of offshore wind farm with pure DC systems[J].Power System Technology,2015,39(9):2424-2431. | |
52 | 智峤生 .海上能源运输对全球航运市场的影响[J].中国储运,2021(10):196-197. doi:10.3969/j.issn.1005-0434.2021.10.102 |
ZHI Q S .The impact of maritime energy transportation on the global shipping market[J].China Storage & Transport,2021(10):196-197. doi:10.3969/j.issn.1005-0434.2021.10.102 |
[1] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[2] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[3] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[4] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[5] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[6] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
[7] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[8] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[9] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
[10] | Wankai YANG, Xingguo WANG, Shuyang WANG. Analysis of High Frequency Resonance and Suppression in Yu to E VSC-HVDC Project Connected to Power Grid [J]. Power Generation Technology, 2022, 43(3): 492-500. |
[11] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[12] | Bin XU, Shuai XUE, Houlei GAO, Fang PENG. Development Status and Prospects of Offshore Wind Farms and It’s Key Technology [J]. Power Generation Technology, 2022, 43(2): 227-235. |
[13] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[14] | Zuozhou CHEN, Hao YU, Panpan WANG, Honglin CHEN, Wuhui CHEN. Definition and Influencing Factors of Short-Circuit Ratio Between Offshore Wind Power Cluster and Thermal Power Bundling System [J]. Power Generation Technology, 2022, 43(2): 207-217. |
[15] | Xuelin LI, Ling YUAN. Development Status and Suggestions of Hydrogen Production Technology by Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 198-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||