Power Generation Technology ›› 2021, Vol. 42 ›› Issue (1): 20-30.DOI: 10.12096/j.2096-4528.pgt.20082
• Power System Planning • Previous Articles Next Articles
Jilei YE1(), Bin LI1(
), Yu ZHANG2(
), Mingzhe LI1(
), Bowen SHI1(
), Haojing WANG2(
)
Received:
2020-09-21
Published:
2021-02-28
Online:
2021-03-12
Supported by:
储能类型 | 能量密度/ (W·h/kg) | 自放电率/ (%/d) | 额定功率下放电时间/h | 循环寿命/次 | 能量效率/% | 响应时间 | 安全性 | 功率等级/MW | ||
抽水蓄能 | 0.5~1.5 | - | 1~24+ | > 15 000 | 65~80 | 分钟 | 高 | 数百~数千 | ||
压缩空气储能 | 30~60 | - | 1~24+ | > 10 000 | 41~75 | 数秒~数分钟 | 高 | 数个~数千 | ||
飞轮 | 10~30 | 100 | 0~0.01 | 104~107 | 80~90 | < 1周波 | 高 | 0~数个 | ||
电化学储能 | 铅酸电池 | 30~50 | < 0.1 | 1~5 | 250~1 500(100%DOD) | 70~80 | < 1/4周波 | 高 | 0~数十 | |
磷酸铁锂电池 | 75~200 | 1 | 0.017~4+ | 2 000~2 500(100%DOD) | 88 | < 1/4周波 | 较高 | 0~数十 | ||
三元锂离子电池 | 200~300 | 1 | 0.017~4+ | 3 500~4 500(100%DOD) | 88 | < 1/4周波 | 较低 | 0~数十 | ||
液流电池 | 10~30 | 小 | 2~12 | > 10 000(100%DOD) | 60~75 | < 1/4周波 | 高 | 0~数十 | ||
钠硫电池 | 150~240 | - | 4~8 | 2 500~4 500(100%DOD) | 70~85 | < 1/4周波 | 较低 | 0~数十 | ||
储热 | 80~200 | 0.05~1.00 | 1~24+ | 5~15 | 14~18 | - | 高 | 数十~数百 | ||
储氢 | 400~1 000 | 0 | 12+ | 1 000~10 000 | 35~40 | < 1/4周波 | 较低 | 0~数十 |
Tab. 1 Performance status of energy storage technology
储能类型 | 能量密度/ (W·h/kg) | 自放电率/ (%/d) | 额定功率下放电时间/h | 循环寿命/次 | 能量效率/% | 响应时间 | 安全性 | 功率等级/MW | ||
抽水蓄能 | 0.5~1.5 | - | 1~24+ | > 15 000 | 65~80 | 分钟 | 高 | 数百~数千 | ||
压缩空气储能 | 30~60 | - | 1~24+ | > 10 000 | 41~75 | 数秒~数分钟 | 高 | 数个~数千 | ||
飞轮 | 10~30 | 100 | 0~0.01 | 104~107 | 80~90 | < 1周波 | 高 | 0~数个 | ||
电化学储能 | 铅酸电池 | 30~50 | < 0.1 | 1~5 | 250~1 500(100%DOD) | 70~80 | < 1/4周波 | 高 | 0~数十 | |
磷酸铁锂电池 | 75~200 | 1 | 0.017~4+ | 2 000~2 500(100%DOD) | 88 | < 1/4周波 | 较高 | 0~数十 | ||
三元锂离子电池 | 200~300 | 1 | 0.017~4+ | 3 500~4 500(100%DOD) | 88 | < 1/4周波 | 较低 | 0~数十 | ||
液流电池 | 10~30 | 小 | 2~12 | > 10 000(100%DOD) | 60~75 | < 1/4周波 | 高 | 0~数十 | ||
钠硫电池 | 150~240 | - | 4~8 | 2 500~4 500(100%DOD) | 70~85 | < 1/4周波 | 较低 | 0~数十 | ||
储热 | 80~200 | 0.05~1.00 | 1~24+ | 5~15 | 14~18 | - | 高 | 数十~数百 | ||
储氢 | 400~1 000 | 0 | 12+ | 1 000~10 000 | 35~40 | < 1/4周波 | 较低 | 0~数十 |
新建风电场 | 装机容量/MW | 置信容量/MW | 容量置信度/% |
甘昌风W1 | 501 | 93.310 1 | 18.62 |
甘昌风W2 | 501 | 93.310 1 | 18.62 |
甘威风W1 | 751.5 | 138.081 9 | 18.37 |
甘威风W2 | 751.5 | 138.081 9 | 18.37 |
甘掖风W1 | 751.5 | 76.002 1 | 10.11 |
甘掖风W2 | 751.5 | 76.002 1 | 10.11 |
甘玉门W1 | 801 | 83.480 4 | 10.42 |
青海风W1 | 801 | 177.187 6 | 22.12 |
青海风W2 | 801 | 177.187 6 | 22.12 |
青海风W3 | 801 | 177.187 6 | 22.12 |
Tab. 2 Installed capacity and confidence capacity of new wind power plants planned for 2020 in Northwest Power Grid
新建风电场 | 装机容量/MW | 置信容量/MW | 容量置信度/% |
甘昌风W1 | 501 | 93.310 1 | 18.62 |
甘昌风W2 | 501 | 93.310 1 | 18.62 |
甘威风W1 | 751.5 | 138.081 9 | 18.37 |
甘威风W2 | 751.5 | 138.081 9 | 18.37 |
甘掖风W1 | 751.5 | 76.002 1 | 10.11 |
甘掖风W2 | 751.5 | 76.002 1 | 10.11 |
甘玉门W1 | 801 | 83.480 4 | 10.42 |
青海风W1 | 801 | 177.187 6 | 22.12 |
青海风W2 | 801 | 177.187 6 | 22.12 |
青海风W3 | 801 | 177.187 6 | 22.12 |
场景 | 理论最大消纳能力/% | 实际消纳能力/% | 储能配置(单位可再生能源功率) |
不考虑时差 | 47.1 | 36.4 | 0.52/1.91 |
考虑时差 | 99.6 | 89.4 | 0.334/1.800 |
Tab. 3 Energy storage configuration for improving renewable energy consumption
场景 | 理论最大消纳能力/% | 实际消纳能力/% | 储能配置(单位可再生能源功率) |
不考虑时差 | 47.1 | 36.4 | 0.52/1.91 |
考虑时差 | 99.6 | 89.4 | 0.334/1.800 |
应用场景 | 储能规模/MW | 放电时间 | 响应时间 | 适合的储能类型 |
替代大型可再生能源基地长时间供电 | 数十~数百(结合可再生能源基地规模) | 数小时(结合负荷供电要求) | 分钟级 | 抽水蓄能、压缩空气储能、电化学储能、储氢 |
减小特高压直流换相失败率 | 数百~数千(结合输电容量和其他调节能力) | 数百毫秒~数秒 | 毫秒级 | 电化学储能 |
提升负荷中心可再生能源消纳 | 数十~数百(结合可再生能源发电和负荷特性) | 4~6 h | 分钟级 | 电化学储能为主 |
Tab. 4 Energy storage application requirements for different application scenarios
应用场景 | 储能规模/MW | 放电时间 | 响应时间 | 适合的储能类型 |
替代大型可再生能源基地长时间供电 | 数十~数百(结合可再生能源基地规模) | 数小时(结合负荷供电要求) | 分钟级 | 抽水蓄能、压缩空气储能、电化学储能、储氢 |
减小特高压直流换相失败率 | 数百~数千(结合输电容量和其他调节能力) | 数百毫秒~数秒 | 毫秒级 | 电化学储能 |
提升负荷中心可再生能源消纳 | 数十~数百(结合可再生能源发电和负荷特性) | 4~6 h | 分钟级 | 电化学储能为主 |
1 | 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015: 639- 641. |
LIU Z Y . Global energy internet[M]. Beijing: China Electric Power Press, 2015: 639- 641. | |
2 | 王金星, 张少强, 张瀚文, 等. 燃煤电厂调峰调频储能技术的研究进展[J]. 华电技术, 2020, 42 (4): 64- 71. |
WANG J X , ZHANG S Q , ZHANG H W , et al. Progress on the peak load regulation, frequency regulation and energy storage technologies for coal-fired power plants[J]. Huadian Technology, 2020, 42 (4): 64- 71. | |
3 | 罗庆, 张新燕, 罗晨, 等. 新能源发电中储能综合利用的优化评估[J]. 智慧电力, 2020, 48 (9): 51- 55. |
LUO Q , ZHANG X Y , LUO C , et al. Optimal evaluation of energy storage comprehensive utilization in new energy generation[J]. Smart Power, 2020, 48 (9): 51- 55. | |
4 | 李佳曼, 万文军, 苏伟, 等. 大容量储能移动并网测试装置设计及试验[J]. 广东电力, 2020, 33 (10): 9- 15. |
LI J M , WANG W J , SU W , et al. Design and test of large-capacity energy storage mobile grid-connected test device[J]. Guangdong Electric Power, 2020, 33 (10): 9- 15. | |
5 | 王冰, 王楠, 田政, 等. 美国电化学储能产业政策分析及对我国储能产业发展的启示与建议[J]. 分布式能源, 2020, 5 (3): 23- 28. |
WANG B , WANG N , TIAN Z , et al. Policy analysis of electrochemical energy storage industry in united states and its enlightenment and suggestions for development of China's energy storage industry[J]. Distributed Energy, 2020, 5 (3): 23- 28. | |
6 | 万德超, 孙树敏, 尹文泉. 基于MRAS的飞轮储能系统控制与应用[J]. 智慧电力, 2019, 47 (6): 101- 106. |
WAN D C , SUN S M , YIN W Q . Control and application of flywheel energy storage system based on MRAS[J]. Smart Power, 2019, 47 (6): 101- 106. | |
7 | 葛维春, 刘闯, 王艺博. 电网大规模电储热单元优化调度模型研究[J]. 智慧电力, 2019, 47 (4): 32- 37. |
GE W C , LIU C , WANG Y B . Optimal dispatching model of large scale thermal storage unit in power grid[J]. Smart Power, 2019, 47 (4): 32- 37. | |
8 | 贾洋洋, 仲海涛, 张智晟. 含储氢装置的分布式能源系统的优化经济调度[J]. 广东电力, 2019, 32 (11): 38- 44. |
JIA Y Y , ZHONG H T , ZHANG Z S . Optimized economic dispatch of distributed energy system with hydrogen storage device[J]. Guangdong Electric Power, 2019, 32 (11): 38- 44. | |
9 | 王作家, 竺炜, 程志勇. 抽水蓄能发电对直流受端多态频率稳定的影响[J]. 发电技术, 2020, 41 (4): 346- 353. |
WANG Z J , ZHU W , CHENG Z Y . Influence of pumped storage power generation on multi-state frequency stability of DC receiver[J]. Power Generation Technology, 2020, 41 (4): 346- 353. | |
10 | 王威, 李润秋, 张鹭, 等. 计及多类型电储能的综合能源系统优化运行对比分析研究[J]. 电网与清洁能源, 2020, 36 (2): 110- 116. |
WANG W , LI R Q , ZHANG L , et al. Comparative analysis and research on optimal operation of the integrated energy system considering multi-type electrical storage[J]. Advances of Power System & Hydroelectric Engineering, 2020, 36 (2): 110- 116. | |
11 | 陈超, 刘海滨, 葛景, 等. 双馈变速抽蓄机组参与平抑风电功率波动研究[J]. 发电技术, 2020, 41 (4): 452- 460. |
CHEN C , LIU H B , GE J , et al. Wind power fluctuation suppression by doubly-fed variable-speed pumped storage unit[J]. Power Generation Technology, 2020, 41 (4): 452- 460. | |
12 | 沈汉铭, 俞夏欢. 用户侧分布式电化学储能的经济性分析[J]. 浙江电力, 2019, 38 (5): 50- 54. |
SHEN H M , YU X H . Economic analysis of distributed electrochemical energy storage on the user-side[J]. Zhejiang Electric Power, 2019, 38 (5): 50- 54. | |
13 | 慈松, 李宏佳, 陈鑫, 等. 能源互联网重要基础支撑: 分布式储能技术的探索与实践[J]. 中国科学: 信息科学, 2014, 44 (6): 762- 773. |
CI S , LI H J , CHEN X , et al. The cornerstone of energy internet: research and practice of distributed energy storage technology[J]. Scientia Sinica Informationis, 2014, 44 (6): 762- 773. | |
14 | 王松岑, 来小康, 程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37 (1): 3- 8. |
WANG S C , LAI X K , CHEN S J . An analysis of prospects for application of large-scale energy storage technology in power system[J]. Automation of Electric Power Systems, 2013, 37 (1): 3- 8. | |
15 | 李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39 (23): 15- 25. |
LI J L , TIAN L T , LAI X K . Outlook of electrical energy storage technologies under energy internet background[J]. Automation of Electric Power Systems, 2015, 39 (23): 15- 25. | |
16 | 荆平, 徐桂芝, 赵波, 等. 面向全球能源互联网的大容量储能技术[J]. 智能电网, 2015, 3 (6): 486- 492. |
JING P , XU G Z , ZHAO B , et al. Large-scale energy storage technology for global energy internet[J]. Smart Grid, 2015, 3 (6): 486- 492. | |
17 | 殷树刚, 苗培青, 拜克明, 等. 利用特高压输电技术提高全球能源使用效率[J]. 中国电力, 2010, 43 (2): 1- 5. |
YIN S G , MIAO P Q , BAI K M , et al. To improve utilization efficiency of global energy resources through UHV power transmission technology[J]. Electric Power, 2010, 43 (2): 1- 5. | |
18 |
CHEN H , CONG T N , YANG W , et al. Progress in electrical energy storage system: a critical review[J]. Progress in Natural Science, 2009, 19, 291- 312.
DOI |
19 |
ZHAO H , WU Q , HU S , et al. Review of energy storage system for wind power integration support[J]. Applied Energy, 2015, 137, 545- 553.
DOI |
20 |
BEAUDIN M , ZAREIPOUR H , SCHELLENBERGLABE A , et al. Energy storage for mitigating the variability of renewable electricity sources: an updated review[J]. Energy for Sustainable Development, 2010, 14, 302- 314.
DOI |
21 | FAIAS S, SANTOS P, SOUSA J, et al.An overview on short and long-term response energy storage devices for power systems application[EB/OL].(2018-08-29)[2020-09-01].http://www.icrepq.com/icrepq-08/327-faias.pdf. |
22 |
KALDELLIS J , ZAFIRAKIS D . Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency[J]. Energy, 2007, 32 (12): 2295- 2305.
DOI |
23 |
DENHOLM P , KULCINSKI G L . Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems[J]. Energy Conversion Management, 2004, 45, 2153- 2172.
DOI |
24 | SCHOENUNG S M.Characteristics and technologies for long-vs.short-term energy storage[EB/OL].(2018- 07-15)[2020-09-01].https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2001/010765.pdf. |
25 | RAHMAN M M , ONI A O , GEMECHU E , et al. Assessment of energy storage technologies: a review[J]. Energy Conversion Management, 2020, 223, 1- 28. |
26 | 马守达, 杨锦成, 崔承刚, 等. 能源互联网储能技术应用研究[J]. 发电技术, 2018, 39 (5): 412- 418. |
MA S D , YANG J C , CUI C G , et al. Research on application of energy storage technology in energy internet[J]. Power Generation Technology, 2018, 39 (5): 412- 418. | |
27 | 中关村储能产业技术联盟. 储能产业研究白皮书[Z]. 北京: 中关村储能产业技术联盟, 2020. |
China Energy Storage Alliance.Energy storage white paper[Z].Beijing: Zhongguancun Energy Storage Industry Technology Alliance, 2020. | |
28 | 张宁, 康重庆, 陈治坪, 等. 基于序列运算的风电可信容量计算方法[J]. 中国电机工程学报, 2011, 31 (25): 1- 9. |
ZHANG N , KANG C Q , CHEN Z P , et al. Wind power credible capacity evaluation model based on sequence operation[J]. Proceedings of the CSEE, 2011, 31 (25): 1- 9. | |
29 | MOLINAS M, VAZQUEZ S, TAKAKU T, et al.Improvement of transient stability margin in power systems with integrated wind generation using a STATCOM: an experimental verification[C]//2005 International Conference on Future Power Systems.IEEE, 2006. |
30 | 高宁超. 风力发电容量可信度研究[D]. 北京: 华北电力大学, 2012. |
GAO N C.Study on capacity credit of wind power generation[D].Beijing: North China Electric Power University, 2012. | |
31 | 冯长有, 姚伟锋, 江叶峰, 等. 特高压直流运行风险评估技术研究及应用[J]. 智慧电力, 2020, 48 (7): 30- 37. |
FENG C Y , YAO W F , JIANG Y F , et al. Study and application of UHVDC operation risk evaluation[J]. Smart Power, 2020, 48 (7): 30- 37. | |
32 | 马燕君, 李海锋, 王钢. 同塔双回高压直流输电线路单极接地故障引发换相失败研究[J]. 广东电力, 2019, 32 (11): 86- 95. |
MA Y J , LI H F , WANG G . Study on commutation failure caused by single pole to ground fault on double-circuit HVDC transmission lines of the same tower[J]. Guangdong Electric Power, 2019, 32 (11): 86- 95. | |
33 | 李明节. 大规模特高压交直流混联电网特性分析与运行控制[J]. 电网技术, 2016, 40 (4): 985- 991. |
LI M J . Characteristic analysis and operational control of large-scale hybrid UHV AC/DC power grids[J]. Power System Technology, 2016, 40 (4): 985- 991. |
[1] | Dan ZHOU, Zhi YUAN, Ji LI, Wei FAN. An Advanced Fuzzy Control Strategy for Hybrid Energy Storage Systems Considering Smoothing of Wind Power Fluctuations at Future Moments [J]. Power Generation Technology, 2024, 45(3): 412-422. |
[2] | Bin ZHAO, Gao LIANG, Menghao JIANG, Gang ZOU, Li WANG. Grid-Connected Power Fluctuation Suppression and Energy Storage Optimization Configuration of Photovoltaic-Energy Storage System [J]. Power Generation Technology, 2024, 45(3): 423-433. |
[3] | Junhui LI, Guohang CHEN, Teng MA, Cuiping LI, Xingxu ZHU, Chen JIA. Optimal Control Strategy of Peak Shaving of Flow Battery Energy Storage System Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(3): 434-447. |
[4] | Xiuxiun HAN, Shaoxin WEI, Jian WANG, Chaojie CUI, Weizhong QIAN. Preparation and Performance Analysis of High Performance Cathode Material Graphene-Mesoporous Carbon Composites for Lithium-Ion Capacitor [J]. Power Generation Technology, 2024, 45(3): 494-507. |
[5] | Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU. Energy Storage Configuration Considering the System Wind Power Reserve Capacity Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(2): 260-272. |
[6] | Jianhao SUN, Zhuang CHU. Optimal Configuration of Distributed Generation Considering Carbon Trading and Reactive Power Compensation [J]. Power Generation Technology, 2024, 45(1): 142-150. |
[7] | Jian FANG, Hui LI. Research on Current Control Strategy of the LCL-Type Grid-Connected Inverter Based on State Reconfiguration With Quasi Resonant-Extended State Observer [J]. Power Generation Technology, 2024, 45(1): 170-179. |
[8] | Zhihua CHEN, Mengkai YOU, Wei CAI, Jingwei HU, Xing HU, Aifang ZHANG, Kejie ZHANG, Wei WANG. Comprehensive Evaluation Model of Energy Storage Power Station With Full Life Cycle [J]. Power Generation Technology, 2023, 44(6): 883-888. |
[9] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[10] | Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry [J]. Power Generation Technology, 2023, 44(3): 296-304. |
[11] | Junjie KANG, Chunyang ZHAO, Guopeng ZHOU, Liang ZHAO. Research on Development Status and Implementation Path of Wind-Solar-Water-Thermal-Energy Storage Multi-Energy Complementary Demonstration Project [J]. Power Generation Technology, 2023, 44(3): 407-416. |
[12] | Xuebo GUO, Liangchi FAN, Zhenjing XU, You LI, Jun LIN, Lin CHEN. Research and Application Progress of Phase Change Thermal Energy Storage Materials for Energy Saving and Carbon Reduction [J]. Power Generation Technology, 2023, 44(2): 201-212. |
[13] | Zhenzhen YE, Xinqi CHEN, Shuting ZHANG, Jian WANG, Chaojie CUI, Gang ZHANG, Lei ZHANG, Luming QIAN, Ying JIN, Weizhong QIAN. Long Period Operation of Ionic Liquid Based Electrical Double Layer Capacitor at 45 ℃ and 3 V [J]. Power Generation Technology, 2023, 44(2): 213-220. |
[14] | Yi CHEN, Yingxin XU, Dongjie XU, Xiang GAO. Optimal Configuration and Performance Analysis of Terminal Multi-energy Complementary System [J]. Power Generation Technology, 2022, 43(6): 823-833. |
[15] | Yibo HAO, Xili DU, Xiaozhu LI, Laijun CHEN. Shared Energy Storage Trading Mode of New Energy Station Group Considering Energy Storage Performance Difference [J]. Power Generation Technology, 2022, 43(5): 687-697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||