Power Generation Technology ›› 2021, Vol. 42 ›› Issue (1): 103-114.DOI: 10.12096/j.2096-4528.pgt.19093
• Power System Planning • Previous Articles Next Articles
Yonggeng LU(), Jiangang LI(
), Yuming HUANG, Baiyu LI
Received:
2020-01-30
Published:
2021-02-28
Online:
2021-03-12
Supported by:
模块 | 参数设置 |
DG | Vdc=800 V,r=0.01Ω,L=0.009 H,C=500 μF |
PQ | 0~0.5 s:Pref=40 kW,Qref=30 kV·A 0.5~1.0 s:Pref=45 kW,Qref=47 kV·A 电流环:kip=30,kii=100 |
负载 | P=50 kW,Q=0 kV·A |
配电网 | 三相对称, |
Tab. 1 Parameter setting of PQ controlsimulation model
模块 | 参数设置 |
DG | Vdc=800 V,r=0.01Ω,L=0.009 H,C=500 μF |
PQ | 0~0.5 s:Pref=40 kW,Qref=30 kV·A 0.5~1.0 s:Pref=45 kW,Qref=47 kV·A 电流环:kip=30,kii=100 |
负载 | P=50 kW,Q=0 kV·A |
配电网 | 三相对称, |
模块 | 参数设置 |
微电源 | Vdc=1 000 V,R=0.1Ω,L=800 μH,C=500 μF |
V/f | 0~0.5 s:Uload-ref=220 V(负载相间电压有效值) 0.5~1.0 s:Uload-ref=380 V 电流环PI:kip=10,kii=2 000 电压环P:kp=0.5 |
负载 | P=50 kW,Q=0 kV·A |
Tab. 2 Parameter setting of V/f controlsimulation model
模块 | 参数设置 |
微电源 | Vdc=1 000 V,R=0.1Ω,L=800 μH,C=500 μF |
V/f | 0~0.5 s:Uload-ref=220 V(负载相间电压有效值) 0.5~1.0 s:Uload-ref=380 V 电流环PI:kip=10,kii=2 000 电压环P:kp=0.5 |
负载 | P=50 kW,Q=0 kV·A |
模块 | 参数设置 |
DG | Vdc=1 000 V,r=0.01Ω,L=800 μH,C=500 μF |
Droop | 0~0.5 s,负载1、2同时运行;0.5 s,切除负载2 电流环PI,kip=10,kii=2 000;电压环P,kp=0.5 |
负载1 | P1=60 kW,Q1=7.8 kV·A |
负载2 | P2=15 kW,Q2=7.2 kV·A |
Tab. 3 Parameter setting of Droop controlsimulation model
模块 | 参数设置 |
DG | Vdc=1 000 V,r=0.01Ω,L=800 μH,C=500 μF |
Droop | 0~0.5 s,负载1、2同时运行;0.5 s,切除负载2 电流环PI,kip=10,kii=2 000;电压环P,kp=0.5 |
负载1 | P1=60 kW,Q1=7.8 kV·A |
负载2 | P2=15 kW,Q2=7.2 kV·A |
模块 | 参数设置 |
DG | Vdc=800 V,r=0.1Ω,L=600 μH,C=1 500 μF |
Droop | 0~0.5 s:负载1、2同时运行 0.5 s:切除负载2 Dp=40.5,Dq=227.3,J=0.5 Pn=20 kW,Qn=0 kV·A fn=50 Hz,Uref=311 V 电流环PI:kip=30,kii=100 电压环P:kp=0.5 |
负载1 | P1=40 kW,Q1=0 kV·A |
负载2 | P2=10 kW,Q2=10 kV·A |
Tab. 4 Parameter setting of VSG controlsimulation model
模块 | 参数设置 |
DG | Vdc=800 V,r=0.1Ω,L=600 μH,C=1 500 μF |
Droop | 0~0.5 s:负载1、2同时运行 0.5 s:切除负载2 Dp=40.5,Dq=227.3,J=0.5 Pn=20 kW,Qn=0 kV·A fn=50 Hz,Uref=311 V 电流环PI:kip=30,kii=100 电压环P:kp=0.5 |
负载1 | P1=40 kW,Q1=0 kV·A |
负载2 | P2=10 kW,Q2=10 kV·A |
1 | 杨亮, 王聪, 吕志鹏, 等. 模拟同步发电机特性的同步逆变器研制[J]. 电力系统及其自动化学报, 2014, 26 (11): 12- 16. |
YANG L , WANG C , LÜ Z P , et al. Prototype validation of synchronverter for synchronous-generator-emulated[J]. Proceedings of the CSU-EPSA, 2014, 26 (11): 12- 16. | |
2 | 李云波, 张子立, 张晋宾, 等. 基于区块链的分布式微电网交易与能源调度研究[J]. 华电技术, 2020, 42 (8): 24- 31. |
LI Y B , ZHANG Z L , ZHANG J B , et al. Energy trading and scheduling on micro-grid based on blockchain technology[J]. Huadian Technology, 2020, 42 (8): 24- 31. | |
3 | 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39 (21): 165- 175. |
ZHENG T W , CHEN L J , CHEN T Y , et al. Review and prospect of virtual synchronous generator technologies[J]. Automation of Electric Power Systems, 2015, 39 (21): 165- 175. | |
4 | 胡兵轩, 任庭昊, 车洵, 等. 基于QPCI控制的微电网并网逆变器控制技术研究[J]. 智慧电力, 2020, 48 (1): 23- 27. |
HU B X , REN T H , CHE X , et al. Single-phase grid-connected inverter control technology for microgrid based on QPCI control[J]. Smart Power, 2020, 48 (1): 23- 27. | |
5 | 王成山, 李琰, 彭克. 分布式电源并网逆变器典型控制方法综述[J]. 电力系统及其自动化学报, 2012, 24 (2): 12- 20. |
WANG C S , LI Y , PENG K . Overview of typical control methods for grid-connected inverters of distributed generation[J]. Proceedings of the CSU-EPSA, 2012, 24 (2): 12- 20. | |
6 | 廖碧莲, 唐江琦, 吴誉寰, 等. 光伏并网逆变器控制策略研究[J]. 分布式能源, 2019, 4 (3): 50- 55. |
LIAO B L , TANG J Q , WU Y H , et al. Control strategy of photovoltaic grid-connected inverter[J]. Distributed Energy, 2019, 4 (3): 50- 55. | |
7 | 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37 (2): 336- 349. |
ZHONG Q C . Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37 (2): 336- 349. | |
8 | 程启明, 李涛, 程尹曼, 等. 基于改进P-Q控制的光伏准Z源T型逆变器并网控制系统[J]. 广东电力, 2018, 31 (9): 54- 61. |
CHENG Q M , LI T , CHEN Y M , et al. Grid-connected control system of photovoltaic quasi-Z-source T-type inverter based on improved P-Q control[J]. Guangdong Electric Power, 2018, 31 (9): 54- 61. | |
9 | 赵兴勇, 贺天云, 陈浩宇, 等. 多功能逆变器在微电网储能系统中的应用[J]. 电网与清洁能源, 2019, 35 (1): 36- 43. |
ZHAO X Y , HE T Y , CHEN H Y , et al. Application of multifunctional inverter in energy storage system of micro-grid[J]. Power System and Clean Energy, 2019, 35 (1): 36- 43. | |
10 | ZHONG Q C , MA Z , MING W L , et al. Grid-friendly wind power systems based on the synchronverter technology[J]. Energy Conversion and Management, 2015, 8 (9): 719- 726. |
11 | 陈磊, 符仕浩, 成佳斌, 等. 分布式发电系统并网逆变器高稳态性能重复控制策略[J]. 浙江电力, 2019, 38 (10): 6- 11. |
CHEN L , FU S H , CHENG J B , et al. High steady-state performance repetitive control approach for grid-connected inverter of distributed generation system[J]. Zhejiang Electric Power, 2019, 38 (10): 6- 11. | |
12 | ZHONG Q C , KONSTANTOPOULOS G C , REN B B , et al. Improved synchronverters with bounded frequency and voltage for smart grid integration[J]. IEEE Transactions on Smart Grid, 2016, 1- 11. |
13 | 范丽霞, 蔡瑞强, 张欢畅, 等. 电压型虚拟同步发电机控制策略下的双馈风电机组阻抗及次同步振荡特性[J]. 发电技术, 2019, 40 (5): 434- 439. |
FAN L X , CAI R Q , ZHANG H C , et al. Impedance and sub-synchronous oscillation characteristics of doubly-fed induction generators with control strategy of voltage virtual synchronous generator[J]. Power Generation Technology, 2019, 40 (5): 434- 439. | |
14 | 卞艺衡, 桂恒立, 别朝红. 考虑重构和微电网分区的分布式电源优化配置[J]. 智慧电力, 2020, 48 (7): 8- 15. |
BIAN Y H , GUI H L , BIE Z H . Optimal DG allocation considering reconfiguration and microgrid zoning[J]. Smart Power, 2020, 48 (7): 8- 15. | |
15 | 郭亦宗, 郭创新. 基于虚拟同步发电机的微电网并离网安全控制策略[J]. 发电技术, 2020, 41 (6): 650- 658. |
GUO Y Z , GUO C X . Security control strategy of micro-grid between grid-connected and off-grid based on virtual synchronous generator[J]. Power Generation Technology, 2020, 41 (6): 650- 658. | |
16 | 舒海莲. 微电网运行特性及其控制研究[D]. 上海: 上海电力学院, 2011. |
SHU H L.Research of microgrid for its operation characteristic and control[D].Shanghai: Shanghai University of Electric Power, 2011. | |
17 | 曹元峥. 基于虚拟同步发电机的微电网逆变器控制策略研究[D]. 合肥: 合肥工业大学, 2017. |
CAO Y Z.Research on control strategy of microgrid inverter based on virtual synchronous generator[D]. Hefei: Hefei University of Technology, 2017. | |
18 | 万达. 基于虚拟同步发电机的微网逆变器控制策略研究[D]. 沈阳: 沈阳工业大学, 2018. |
WAN D.Study on the control strategy of inverter in microgrid based on virtual synchronous generator[D].Shenyang: Shenyang University of Technology, 2018. | |
19 | 司家荣, 蔡国伟, 孙正龙, 等. 基于下垂控制逆变器的虚拟发电机建模与特性研究[J]. 电测与仪表, 2017, 54 (22): 116- 122. |
SI J R , CAI G W , SUN Z L , et al. Modeling and virtual synchronous generator characteristics research based on droop-controlled inverters[J]. Electrical Measurement & Instrumentation, 2017, 54 (22): 116- 122. | |
20 | 董宜鹏, 谢小荣, 孙浩, 等. 微网电池储能系统通用综合控制策略[J]. 电网技术, 2013, 37 (12): 3310- 3316. |
DONG Y P , XIE X R , SUN H , et al. A general-purpose control strategy for battery energy storage system in microgrid[J]. Power System Technology, 2013, 37 (12): 3310- 3316. | |
21 | 胡长斌, 王鑫, 罗珊娜, 等. 微电网多微源能量优化协调控制[J]. 中国电机工程学报, 2015, 35 (S1): 36- 43. |
HU C B , WANG X , LUO S N , et al. Energy optimization coordination control of multi-sources in microgrid[J]. Proceedings of the CSEE, 2015, 35 (S1): 36- 43. | |
22 | 陈文倩, 辛小南, 程志平. 基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33 (S2): 538- 545. |
CHEN W Q , XIN X N , CHENG Z P . Control of grid-connected of photovoltaic system with storage based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33 (S2): 538- 545. |
[1] | Jianwei LIU, Xuebin LI, Xiaoou LIU. Distributed Power Access and Energy Storage Configuration in Active Distribution Network [J]. Power Generation Technology, 2022, 43(3): 476-484. |
[2] | Jing LI, Zhihe WANG, Hao NI. Research on DC Microgrid Operation Based on Improved Droop Control [J]. Power Generation Technology, 2021, 42(6): 765-774. |
[3] | Jixin YANG, Jiuhe WANG, Mian WANG, Zhenye WANG. Research on Virtual Inertial Control Strategy of DC Microgrid With Photovoltaic and Storage System Based on Passivity-based Control [J]. Power Generation Technology, 2021, 42(5): 576-584. |
[4] | Xin LU, Zhongli CHEN, Hui LI. Research on Control Strategy of Bidirectional Buck-Boost Converter in DC Microgrid Based on Active Disturbance Rejection Control [J]. Power Generation Technology, 2021, 42(2): 193-200. |
[5] | Haichuan ZHAO, Yandong LU, Haokang ZHENG, Zuoxia XING. Research on Low Voltage Ride Through for Small Direct-driven Permanent Magnet Wind Turbine in Low Voltage Microgrid [J]. Power Generation Technology, 2020, 41(6): 659-666. |
[6] | Jiuhe WANG,Mian WANG,Xuezhi WU,Jianguo LI,Fen TANG,YA Jing ZHANG. Review of Stability Criteria Study for Direct Current Distributed Power System [J]. Power Generation Technology, 2020, 41(2): 175-185. |
[7] | Lixia SUN,Ping JU,Jingtao BAI,Tiantian LIU. Multi-objective Economic Optimal Operation of Microgrid Based on Combined Cooling, Heating and Power Considering Battery Life [J]. Power Generation Technology, 2020, 41(1): 64-72. |
[8] | Hui ZHU,Hongfang LÜ,Xiaoming YANG. Multi-objective Optimization Scheduling of Microgrid Based on Multi-agent System [J]. Power Generation Technology, 2019, 40(6): 527-534. |
[9] | Zhichao LIU,Hongbin WANG,Hao SHA,Jinshu YANG,Shengxian CAO. Status and Prospect Analysis of Wind Power Utilization Technology in China [J]. Power Generation Technology, 2019, 40(4): 389-395. |
[10] | Zhongqiang LIU,Zhongfu LIU. Detection Method for Islanded Microgrid Based on the Local Detection Method [J]. Power Generation Technology, 2019, 40(2): 122-127. |
[11] | BRUCEN. Anderson,Xiang HUANG,Haixiang SUN,Fuhua WANG. Solar Heat Plant for a Newly Brayton Tower Circulation [J]. Power Generation Technology, 2018, 39(1): 37-42. |
[12] | ZHANG Shi-long, LIU Qing-chao, ZHANG Jun, WEI Chao, FENG Yi-ming, YANG Yu, TANG Zi-peng, ZHANG Yin-long, ZHANG Yong-ming. A Deaerator Automatic Regulating Oxygen Concentration Device and Method Research [J]. Power Generation Technology, 2017, 38(1): 66-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||