Power Generation Technology ›› 2021, Vol. 42 ›› Issue (1): 115-121.DOI: 10.12096/j.2096-4528.pgt.19001
• Power System Planning • Previous Articles Next Articles
Jingsong DENG1(), Yingmin WANG1(
), Difei SUN1(
), Chenling ZHENG2(
), Hanting YAN2(
), Xiaojing GAO2(
)
Received:
2020-01-10
Published:
2021-02-28
Online:
2021-03-12
Supported by:
开关 | Ⅰ段 | Ⅱ段 | Ⅲ段 | |||||
电流/A | 时间/s | 电流/A | 时间/s | 电流/A | 时间/s | |||
CB | 2 400 | 0.3 | 1 200 | 0.5 | 350 | 1.5 | ||
A | — | — | 1 700 | 0.3 | 170 | 1.2 | ||
B | — | — | 1 400 | 0.3 | 105 | 0.9 | ||
D | — | — | 900 | 0.1 | 82 | 0.6 | ||
E | — | — | 900 | 0.1 | 41 | 0.6 | ||
F | — | — | 900 | 0.1 | 95 | 0.6 |
Tab. 1 The setting of each protection
开关 | Ⅰ段 | Ⅱ段 | Ⅲ段 | |||||
电流/A | 时间/s | 电流/A | 时间/s | 电流/A | 时间/s | |||
CB | 2 400 | 0.3 | 1 200 | 0.5 | 350 | 1.5 | ||
A | — | — | 1 700 | 0.3 | 170 | 1.2 | ||
B | — | — | 1 400 | 0.3 | 105 | 0.9 | ||
D | — | — | 900 | 0.1 | 82 | 0.6 | ||
E | — | — | 900 | 0.1 | 41 | 0.6 | ||
F | — | — | 900 | 0.1 | 95 | 0.6 |
参数 | IIDG容量/(MV·A) | 流过保护的电流/A |
开关CB的灵敏性约束 | 1.0 | 453 |
开关A的灵敏性约束 | 1.9 | 217 |
开关B的灵敏性约束 | 2.1 | 136 |
Tab. 2 IIDG's capacity under sensitivity constraints
参数 | IIDG容量/(MV·A) | 流过保护的电流/A |
开关CB的灵敏性约束 | 1.0 | 453 |
开关A的灵敏性约束 | 1.9 | 217 |
开关B的灵敏性约束 | 2.1 | 136 |
1 | 张伟. 馈线自动化智能开关整定研究及整定软件开发[D]. 西安: 西安科技大学, 2007. |
ZHANG W.Research and development of feeder automation intelligent switch setting software[D].Xi'an: Xi'an Universtity of Science and Technology, 2007. | |
2 | 刘健. 配电网故障处理研究进展[J]. 供用电, 2015, 32 (4): 8- 15. |
LIU J . Research progress on fault treatment of distribution network[J]. Distribution & Utilization, 2015, 32 (4): 8- 15. | |
3 | 庾力维, 李名科, 黄学劲, 等. 基于地理信息系统拓扑数据的配电网短路电流算法[J]. 广东电力, 2019, 32 (8): 83- 91. |
YU L W , LI M K , HUANG X J , et al. Short circuit current algorithm of distribution network based on topological data of geographic information system[J]. Guangdong Electric Power, 2019, 32 (8): 83- 91. | |
4 | 邹剑锋, 张建雨, 金盛, 等. 基于5G通信的新型配电网馈线自动化方法研究[J]. 浙江电力, 2020, 39 (11): 28- 33. |
ZOU J FF , ZHANG J Y , JIN S , et al. Research on new type distribution network feeder automation method based on 5G communication[J]. Zhejiang Electric Power, 2020, 39 (11): 28- 33. | |
5 | 荣秀婷, 赵峰, 朱刘柱, 等. 基于配电自动化终端配置方案的供电可靠性评估[J]. 电网与清洁能源, 2020, 36 (1): 1- 7. |
RONG X T , ZHAO F , ZHU L Z , et al. Power supply reliability assessment based on distribution automation terminal configuration scheme[J]. Power System and Clean Energy, 2020, 36 (1): 1- 7. | |
6 | 刘健, 张伟, 程红丽. 重合器和电压-时间型分段器配合的馈线自动化系统的参数整定[J]. 电网技术, 2006, 30 (16): 45- 49. |
LIU J , ZHANG W , CHENG H L . The parameter setting of feeder automation system based on mutual coordination of recloser with voltage-time type of sectionalizers[J]. Power System Technology, 2006, 30 (16): 45- 49. | |
7 | 赵拥华, 方永毅, 王娜, 等. 逆变型分布式电源接入配电网对馈线自动化的影响研究[J]. 电力系统保护与控制, 2013, 41 (24): 117- 122. |
ZHAO Y H , FANG Y Y , WANG N , et al. Research on the impacts on feeder automation by inverter-based distribution generation connected to the distribution network[J]. Power System Protection and Control, 2013, 41 (24): 117- 122. | |
8 | 中国南方电网有限责任公司. 分布式光伏发电系统接入电网技术规范: Q/CSG 1211001-2014[S]. 中国南方电网有限责任公司, 2014. |
China Southern Power Grid.Technical rule for distributed photovoltaic power system connected to power grid: Q/CSG 1211001-2014[S].China Southern Power Grid, 2014. | |
9 | 吴林. 计及馈线自动化的配电网可靠性分析[D]. 重庆: 重庆大学, 2016. |
WU L.Distribution network reliability analysis with feeder automation included[D].Chongqing: Chongqing University, 2016. | |
10 | 商海涛, 吴林, 赵渊, 等. 计及集中式馈线自动化的配电网可靠性评估模型[J]. 电力自动化设备, 2017, 37 (5): 129- 135. |
SHANG H T , WU L , ZHAO Y , et al. Reliability evaluation model of distribution network incorporating centralized feeder automation[J]. Electric Power Automation Equipment, 2017, 37 (5): 129- 135. | |
11 | 曾照新. 配电网馈线自动化技术研究[D]. 长沙: 湖南大学, 2013. |
ZENG Z X.Research on feeder automation technology of distribution network[D].Changsha: Hunan University, 2013. | |
12 | 柳影. 广西馈线自动化保护整定方法研究[D]. 南宁: 广西大学, 2016. |
LIU Y.Research on automatic protection setting method of feeder in Guangxi[D].Nanning: Guangxi University, 2016. | |
13 | 张波, 吕军, 宁昕. 就地型馈线自动化差异化应用模式[J]. 供用电, 2017, 34 (10): 48- 53. |
ZHANG B , LÜ J , NING X . Local feeder automation differential application model[J]. Distribution & Utilization, 2017, 34 (10): 48- 53. | |
14 | 栾文鹏. 基于分布式保护的网络式馈线配电自动化系统[J]. 供用电, 2010, 27 (4): 5- 9. |
LUAN W P . Network feeder distribution automation system based on distributed protection[J]. Distribution & Utilization, 2010, 27 (4): 5- 9. | |
15 | 顾水福, 张媛, 陈西颖. 主动配电网规划方法研究[J]. 发电技术, 2018, 39 (3): 220- 225. |
GU Y F , ZHANG Y , CHEN X Y . Research on the planning method of active distribution network[J]. Power Generation Technology, 2018, 39 (3): 220- 225. | |
16 | 林霞, 时永, 李强, 等. 基于DG接入的配网自动化系统保护策略的研究[J]. 电力系统保护与控制, 2016, 44 (13): 137- 144. |
LIN X , SHI Y , LI Q , et al. Research on the protection strategy of distribution automation system based on DG access[J]. Power System Protection and Control, 2016, 44 (13): 137- 144. | |
17 | 宋晓东. 逆变型分布式电源对馈线自动化的影响与应对措施研究[D]. 济南: 山东理工大学, 2018. |
SONG X D.Research on the influence of inverter distributed power supply on feeder automation and its countermeasures[D].Jinan: Shandong University of Technology, 2018. | |
18 | 肖小兵, 黄亮亮, 王宇, 等. 分层备用保护型馈线自动化技术研究[J]. 电力系统保护与控制, 2018, 46 (7): 164- 180. |
XIAO X B , HUANG L L , WANG Y , et al. Research of distributed feeder automation with level and protective backup[J]. Power System Protection and Control, 2018, 46 (7): 164- 180. |
[1] | Jianwei LIU, Xuebin LI, Xiaoou LIU. Distributed Power Access and Energy Storage Configuration in Active Distribution Network [J]. Power Generation Technology, 2022, 43(3): 476-484. |
[2] | Baozhong ZHOU, Dunnan LIU, Jiguang ZHANG, Yi LI, Erfeng XU, Sheng BI. Research on Optimal Allocation of Multi-Energy Complementary Project of Wind-Solar-Thermal Integration [J]. Power Generation Technology, 2022, 43(1): 10-18. |
[3] | Jing LI, Zhihe WANG, Hao NI. Research on DC Microgrid Operation Based on Improved Droop Control [J]. Power Generation Technology, 2021, 42(6): 765-774. |
[4] | Yanzhang HUANG, Yuhao ZHOU, Wenguan ZHENG, Mingxiao WANG. Research on New Integrated Energy System With Multi-power Combined Supply of Industrial Parks [J]. Power Generation Technology, 2021, 42(6): 734-740. |
[5] | Yuanyuan SHI, Cong DONG, Wenchao WANG, Xing ZHU, Yongli HUANG, Ming DING, Peng YANG. Experimental and Simulation Study of Series-Parallel Thermoelectric Power Generation Model Based on Liquid Medium [J]. Power Generation Technology, 2021, 42(5): 614-621. |
[6] | Chaoyi PENG, Kun ZHANG, Yaping HU, Yongquan NIE. Application of Dynamic Monitoring System in Electricity Market Environment [J]. Power Generation Technology, 2021, 42(5): 595-603. |
[7] | Jixin YANG, Jiuhe WANG, Mian WANG, Zhenye WANG. Research on Virtual Inertial Control Strategy of DC Microgrid With Photovoltaic and Storage System Based on Passivity-based Control [J]. Power Generation Technology, 2021, 42(5): 576-584. |
[8] | Guoqiang JI, Shanshan WU, Xiandong TAN, Baoguo SHAN. Analysis and Prospect of China's Power Supply and Demand Situation in 2021 [J]. Power Generation Technology, 2021, 42(5): 568-575. |
[9] | Chunsheng ZHAO, Junjun YANG, Jing WANG, Liqiang DUAN. Research on Low-carbon Development Path of Coal-fired Power Industry [J]. Power Generation Technology, 2021, 42(5): 547-553. |
[10] | Jingyi TANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Difference Between Electrode Electric Heating and Traditional Heating and Its Application Prospect in Carbon Neutrality [J]. Power Generation Technology, 2021, 42(5): 525-536. |
[11] | Changsheng ZONG, Qingzhong GAO, Yutong HE, Bai YANG. Analysis on Vibration Influence Factors of Hybrid Permanent Magnet Governor Rotor [J]. Power Generation Technology, 2021, 42(3): 389-394. |
[12] | Wenbo XUAN, Hui LI, Zhongyi LIU, Yeguang SUN, Kai HOU. A Method for Improving the Accommodating Capability of Urban Renewable Energy Based on Virtual Power Plant Technology [J]. Power Generation Technology, 2021, 42(3): 289-297. |
[13] | Tao WU, Hao LIANG, Huan XIE, Yang SHI, Yan ZHAO, Guangtao ZHANG. Key Technologies and Future Prospects of Excitation System Control [J]. Power Generation Technology, 2021, 42(2): 160-170. |
[14] | Xin LU, Zhongli CHEN, Hui LI. Research on Control Strategy of Bidirectional Buck-Boost Converter in DC Microgrid Based on Active Disturbance Rejection Control [J]. Power Generation Technology, 2021, 42(2): 193-200. |
[15] | Jianhua ZHU, Zhenqing LI, Lichang XU. Modal Identification and Analysis of Photovoltaic Converter Based on Random Subspace [J]. Power Generation Technology, 2021, 42(2): 201-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||