发电技术 ›› 2024, Vol. 45 ›› Issue (6): 1074-1086.DOI: 10.12096/j.2096-4528.pgt.24170
• 发电及环境保护 • 上一篇
严新荣1,2, 胡志勇2, 张鹏威2, 郑成航1, 向军3, 唐郭安2, 刘金亮2, 郭剑雄2, 黄一博2, 于鹏峰2, 高翔1
收稿日期:
2024-08-06
修回日期:
2024-09-26
出版日期:
2024-12-31
发布日期:
2024-12-30
作者简介:
基金资助:
Xinrong YAN1,2, Zhiyong HU2, Pengwei ZHANG2, Chenghang ZHENG1, Jun XIANG3, Guo’an TANG2, Jinliang LIU2, Jianxiong GUO2, Yibo HUANG2, Pengfeng YU2, Xiang GAO1
Received:
2024-08-06
Revised:
2024-09-26
Published:
2024-12-31
Online:
2024-12-30
Supported by:
摘要:
目的 在“双碳”战略目标背景下,新能源发电大比例接入电网后电力系统对灵活性调节资源的需求大幅增加,现阶段煤电是具备规模化提升调峰能力的电源侧的主要灵活性资源。自2016年以来,国内主要发电企业已实施一定规模的煤电机组灵活性改造,因此,有必要对灵活性改造后机组实际运行和检修中存在的问题进行总结分析。 方法 对某公司多台煤电机组实施灵活性改造的技术路线、投资费用、实际运行情况等进行统计分析。 结果 现役煤电机组灵活性提升改造后,先进机组最小发电出力可降至18%Pe (Pe为额定负荷)水平;在20%Pe~30%Pe时,变负荷速率可达1.8%Pe/min;平均单位容量投资101元/kW。此外,在灵活运行工况下,改造后的煤电机组发电煤耗大幅升高。 结论 针对煤电机组灵活工况下的运行、检修以及未来进一步工作提出了建议,研究结果为现役煤电机组灵活性提升改造提供参考和借鉴。
中图分类号:
严新荣, 胡志勇, 张鹏威, 郑成航, 向军, 唐郭安, 刘金亮, 郭剑雄, 黄一博, 于鹏峰, 高翔. 煤电机组运行灵活性提升技术研究与应用[J]. 发电技术, 2024, 45(6): 1074-1086.
Xinrong YAN, Zhiyong HU, Pengwei ZHANG, Chenghang ZHENG, Jun XIANG, Guo’an TANG, Jinliang LIU, Jianxiong GUO, Yibo HUANG, Pengfeng YU, Xiang GAO. Research and Application of Operation Flexibility Improvement Technology for Coal-Fired Power Unit[J]. Power Generation Technology, 2024, 45(6): 1074-1086.
图1 中国2050高比例可再生能源发展情景下各类型电源装机构成
Fig. 1 Composition of installed capacity of various types of power sources under the scenario of high proportion of renewable energy development in China by 2050
图2 中国2050高比例可再生能源发展情景下各类型电源发电量占比
Fig. 2 Proportion of electricity generation from various types of power sources under the scenario of high proportion of renewable energy development in China by 2050
发电类型 | 优势 | 劣势 |
---|---|---|
煤电 | 存量大、挖潜空间大 | 增加发电煤耗 |
气电 | 响应快、调节能力强 | 成本高、气源受限 |
常规水电 | 清洁低碳、调节速度快 | 受来水影响 |
抽水蓄能 | 可靠性高、调节速度快 | 建设周期长、选址受限 |
表1 电源侧灵活性资源比较
Tab. 1 Comparison of flexibility resources on the power side
发电类型 | 优势 | 劣势 |
---|---|---|
煤电 | 存量大、挖潜空间大 | 增加发电煤耗 |
气电 | 响应快、调节能力强 | 成本高、气源受限 |
常规水电 | 清洁低碳、调节速度快 | 受来水影响 |
抽水蓄能 | 可靠性高、调节速度快 | 建设周期长、选址受限 |
项目 | 技术路线 |
---|---|
锅炉低负荷稳燃 | 精细化燃烧调整 强化回流、浓淡分离稳燃型燃烧器 点火助燃装置升级 制粉系统干燥出力提升 煤粉动态分离器 风粉在线监测均衡调节 折焰角清灰 燃烧协同控制系统优化 |
锅炉水动力安全 | 增设炉水循环系统 干湿态一键自动切换 |
脱硝装置低负荷连续投运 | 中(高)温烟气旁路 省煤器分级布置 省煤器给水再循环 省煤器给水流量置换 省煤器给水旁路 烟气再循环 CFB锅炉炉内喷氨 CFB锅炉配置紧凑型SCR系统 |
空预器预防积灰堵塞 | 低氮燃烧改造 配置SO3脱除装置 脱硝流场和喷氨优化 优化设计蓄热元件结构 提升空预器冷端温度 |
烟道加固及积灰清理 | 烟道支架强度校核加固 增设积灰清理装置 |
锅炉辅机适应性 | 增设风机防失速装置 变频改造 风机单列运行 |
汽机本体安全 | 更换防水蚀低压缸次末级叶片 动叶根部防水蚀喷涂 减温水流量精确控制 增设低压缸叶片健康监测系统 |
汽机辅机适应性 | 辅助蒸汽汽源改造 给水再循环系统改造 加热器疏水系统改造 空冷岛系统防冻改造 轴封系统适应性改造 |
供热安全性 | 低压缸切缸供热改造 高低旁路抽汽供热改造 新增电锅炉 新增热水蓄热罐 |
协调控制系统优化 | DCS基础控制回路优化 重要控制对象调节特性优化 AGC一次调频系统优化 |
表2 燃煤电厂灵活性提升改造技术路线
Tab. 2 Technical route for improving the flexibility of coal-fired power plant through transformation
项目 | 技术路线 |
---|---|
锅炉低负荷稳燃 | 精细化燃烧调整 强化回流、浓淡分离稳燃型燃烧器 点火助燃装置升级 制粉系统干燥出力提升 煤粉动态分离器 风粉在线监测均衡调节 折焰角清灰 燃烧协同控制系统优化 |
锅炉水动力安全 | 增设炉水循环系统 干湿态一键自动切换 |
脱硝装置低负荷连续投运 | 中(高)温烟气旁路 省煤器分级布置 省煤器给水再循环 省煤器给水流量置换 省煤器给水旁路 烟气再循环 CFB锅炉炉内喷氨 CFB锅炉配置紧凑型SCR系统 |
空预器预防积灰堵塞 | 低氮燃烧改造 配置SO3脱除装置 脱硝流场和喷氨优化 优化设计蓄热元件结构 提升空预器冷端温度 |
烟道加固及积灰清理 | 烟道支架强度校核加固 增设积灰清理装置 |
锅炉辅机适应性 | 增设风机防失速装置 变频改造 风机单列运行 |
汽机本体安全 | 更换防水蚀低压缸次末级叶片 动叶根部防水蚀喷涂 减温水流量精确控制 增设低压缸叶片健康监测系统 |
汽机辅机适应性 | 辅助蒸汽汽源改造 给水再循环系统改造 加热器疏水系统改造 空冷岛系统防冻改造 轴封系统适应性改造 |
供热安全性 | 低压缸切缸供热改造 高低旁路抽汽供热改造 新增电锅炉 新增热水蓄热罐 |
协调控制系统优化 | DCS基础控制回路优化 重要控制对象调节特性优化 AGC一次调频系统优化 |
机组等级 | 改造费用/(万元/台) | 总机组数 | |||
---|---|---|---|---|---|
<2 000 | 2 000~3 000 | 3 000~5 000 | >5 000 | ||
200 MW及以下 | 2 | 4 | 0 | 0 | 6 |
300 MW | 10 | 9 | 6 | 4 | 29 |
600 MW | 5 | 9 | 4 | 0 | 18 |
表3 不同容量煤电机组炉侧灵活性提升改造费用统计
Tab. 3 Statistics on the cost of improving the flexibility of the furnace side for different capacity coal electric generator units
机组等级 | 改造费用/(万元/台) | 总机组数 | |||
---|---|---|---|---|---|
<2 000 | 2 000~3 000 | 3 000~5 000 | >5 000 | ||
200 MW及以下 | 2 | 4 | 0 | 0 | 6 |
300 MW | 10 | 9 | 6 | 4 | 29 |
600 MW | 5 | 9 | 4 | 0 | 18 |
机组等级 | 煤种 | 增加的煤耗/[g/(kW | |||
---|---|---|---|---|---|
锅炉 | 汽轮机 | 辅机厂用电 | 综合 | ||
300 MW | 烟煤 | 2.4 | 10.0 | 10.0 | 22.4 |
贫煤 | 5.4 | 10.0 | 10.0 | 25.4 | |
600 MW | 烟煤 | 2.4 | 18.0 | 8.0 | 28.4 |
贫煤 | 5.4 | 18.0 | 8.0 | 31.4 | |
平均 | 3.9 | 14.0 | 9.0 | 26.9 |
表4 机组在30%Pe深度调峰下较50%Pe下增加的煤耗
Tab. 4 Coal consumption increase of unit under 30%Pe deep peak regulation compared with 50%Pe load
机组等级 | 煤种 | 增加的煤耗/[g/(kW | |||
---|---|---|---|---|---|
锅炉 | 汽轮机 | 辅机厂用电 | 综合 | ||
300 MW | 烟煤 | 2.4 | 10.0 | 10.0 | 22.4 |
贫煤 | 5.4 | 10.0 | 10.0 | 25.4 | |
600 MW | 烟煤 | 2.4 | 18.0 | 8.0 | 28.4 |
贫煤 | 5.4 | 18.0 | 8.0 | 31.4 | |
平均 | 3.9 | 14.0 | 9.0 | 26.9 |
机组等级 | 煤种 | 增加的煤耗/[g/(kW | |||
---|---|---|---|---|---|
锅炉 | 汽轮机 | 辅机厂用电 | 综合 | ||
300 MW | 烟煤 | 6.2 | 27.0 | 19.0 | 52.2 |
贫煤 | 10.7 | 27.0 | 19.0 | 56.7 | |
600 MW | 烟煤 | 6.2 | 33.0 | 15.2 | 54.4 |
贫煤 | 10.7 | 33.0 | 15.2 | 58.9 | |
平均 | 8.45 | 30.0 | 17.1 | 55.6 |
表5 机组在20%Pe深度调峰下较50%Pe下增加的煤耗
Tab. 5 Coal consumption increase of unit under 20%Pe deep peak regulation compared with 50%Pe load
机组等级 | 煤种 | 增加的煤耗/[g/(kW | |||
---|---|---|---|---|---|
锅炉 | 汽轮机 | 辅机厂用电 | 综合 | ||
300 MW | 烟煤 | 6.2 | 27.0 | 19.0 | 52.2 |
贫煤 | 10.7 | 27.0 | 19.0 | 56.7 | |
600 MW | 烟煤 | 6.2 | 33.0 | 15.2 | 54.4 |
贫煤 | 10.7 | 33.0 | 15.2 | 58.9 | |
平均 | 8.45 | 30.0 | 17.1 | 55.6 |
设备 | 部分机组故障 | 检修建议 |
---|---|---|
锅炉 | 低负荷锅炉转态不及时,干态运行水冷壁拉裂、变形;短管-集箱联接处出现疲劳裂纹;受热面氧化皮脱落引发爆管、调门卡涩 | 定期超声无损检查接头、弯头;优化集箱三通结构;定期检测氧化皮 |
汽轮机 | 汽轮机转子、汽缸、阀门等疲劳与蠕变损伤;汽轮机轴系不稳;汽轮机叶片水蚀 | 定期进行叶片防水蚀喷涂;优化叶片气动设计;合理调整汽机通流部分径向间隙;提升缸体刚度 |
热控 | 变负荷工况汽温调节滞后;变负荷工况水位波动;部分辅机调控余量不足;主要参数接近保护动作值 | 丰富精准态势感知手段;提升智能控制应用水平;结合实践优化逻辑保护 |
发电机 | 定转子槽楔、端部线棒、环形引线松动;绝缘磨损致绕组接地;定转子线圈温度异常;发电机轴系振动增加 | 定期进行转子通风通流试验;定期检查转子绕组引线及固定结构;定期进行转子频域阻抗分析试验 |
表6 长期运行存在的设备故障及检修建议
Tab. 6 Equipment malfunctions and maintenance suggestions in long-term operation
设备 | 部分机组故障 | 检修建议 |
---|---|---|
锅炉 | 低负荷锅炉转态不及时,干态运行水冷壁拉裂、变形;短管-集箱联接处出现疲劳裂纹;受热面氧化皮脱落引发爆管、调门卡涩 | 定期超声无损检查接头、弯头;优化集箱三通结构;定期检测氧化皮 |
汽轮机 | 汽轮机转子、汽缸、阀门等疲劳与蠕变损伤;汽轮机轴系不稳;汽轮机叶片水蚀 | 定期进行叶片防水蚀喷涂;优化叶片气动设计;合理调整汽机通流部分径向间隙;提升缸体刚度 |
热控 | 变负荷工况汽温调节滞后;变负荷工况水位波动;部分辅机调控余量不足;主要参数接近保护动作值 | 丰富精准态势感知手段;提升智能控制应用水平;结合实践优化逻辑保护 |
发电机 | 定转子槽楔、端部线棒、环形引线松动;绝缘磨损致绕组接地;定转子线圈温度异常;发电机轴系振动增加 | 定期进行转子通风通流试验;定期检查转子绕组引线及固定结构;定期进行转子频域阻抗分析试验 |
1 | 付允,马永欢,刘怡君,等 .低碳经济的发展模式研究[J].中国人口·资源与环境,2008,18(3):14-19. |
FU Y, MA Y H, LIU Y J,et al .Development patterns of low carbon economy[J].China Population Resources and Environment,2008,18(3):14-19. | |
2 | 胡鞍钢 .中国实现2030年前碳达峰目标及主要途径[J].北京工业大学学报(社会科学版),2021,21(3):1-15. |
HU A G .China’s goal of achieving carbon peak by 2030 and its main approaches[J].Journal of Beijing University of Technology (Social Sciences Edition),2021,21(3):1-15. | |
3 | 张海龙 .中国新能源发展研究[D].长春:吉林大学,2014. |
ZHANG H L .Research on new energy development in China[D].Changchun:Jilin University,2014. | |
4 | 黄雨涵,丁涛,李雨婷,等 .碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J].中国电机工程学报,2021,41(S1):28-51. |
HUANG Y H, DING T, LI Y T,et al .Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J].Proceedings of the CSEE,2021,41(S1):28-51. | |
5 | 张所续,马伯永 .世界能源发展趋势与中国能源未来发展方向[J].中国国土资源经济,2019,32(10):20-27. |
ZHANG S X, MA B Y .Development trend of world energy and future development directions of China’s energy[J].Natural Resource Economics of China,2019,32(10):20-27. | |
6 | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
XU H H, SHAO G P, E C L,et al .Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
7 | 郝伟韬,蔡国田,卢俊曈,等 .源网荷储互动减碳研究综述[J].广东电力,2023,36(11):64-74. |
HAO W T, CAI G T, LU J T,et al .Review of source-grid-load-storage interactive carbon reduction research[J].Guangdong Electric Power,2023,36(11):64-74. | |
8 | 朱凌志,陈宁,韩华玲 .风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34. |
ZHU L Z, CHEN N, HAN H L .Key problems and solutions of wind power accommodation[J].Automation of Electric Power Systems,2011,35(22):29-34. | |
9 | 庄贵阳 .我国实现“双碳”目标面临的挑战及对策[J].人民论坛,2021(18):50-53. |
ZHUANG G Y .Challenges and countermeasures for China to achieve the goal of “double carbon”[J].People’s Tribune,2021(18):50-53. | |
10 | 徐健玮,马刚,高丛,等 .基于风光场景生成的综合能源系统日前-日内优化调度[J].分布式能源,2022,7(4):18-27. |
XU J W, MA G, GAO C,et al .Day-ahead and intra-day optimal scheduling of integrated energy systems based on scenario generation[J].Distributed Energy,2022,7(4):18-27. | |
11 | 张思,杨晓雷,阙凌燕,等 .高比例光伏发电对浙江电网电力平衡的影响及应对策略[J].浙江电力,2022,41(11):9-16. |
ZHANG S, YANG X L, QUE L Y,et al .The impact of high-proportion photovoltaic power generation on the power balance of Zhejiang power grid and its countermeasures[J].Zhejiang Electric Power,2022,41(11):9-16. | |
12 | 冯哲飞,霍志红,魏赏赏,等 .基于自适应SMPC的梯级水-风-光互补系统多目标优化调度[J].可再生能源,2023,41(3):352-360. |
FENG Z F, HUO Z H, WEI S S,et al .Multi-objective optimal scheduling for hydro-wind-photovoltaic system based on adaptive stochastic model predictive control[J].Renewable Energy Resources,2023,41(3):352-360. | |
13 | 卓振宇,张宁,谢小荣,等 .高比例可再生能源电力系统关键技术及发展挑战[J].电力系统自动化,2021,45(9):171-191. doi:10.7500/AEPS20200922001 |
ZHUO Z Y, ZHANG N, XIE X R,et al .Key technologies and developing challenges of power system with high proportion of renewable energy[J].Automation of Electric Power Systems,2021,45(9):171-191. doi:10.7500/AEPS20200922001 | |
14 | 黎博,陈民铀,钟海旺,等 .高比例可再生能源新型电力系统长期规划综述[J].中国电机工程学报,2023,43(2):555-581. |
LI B, CHEN M Y, ZHONG H W,et al .A review of long-term planning of new power systems with large share of renewable energy[J].Proceedings of the CSEE,2023,43(2):555-581. | |
15 | 李晖,刘栋,姚丹阳 .面向碳达峰碳中和目标的我国电力系统发展研判[J].中国电机工程学报,2021,41(18):6245-6259. |
LI H, LIU D, YAO D Y .Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J].Proceedings of the CSEE,2021,41(18):6245-6259. | |
16 | 黄超,陈湘岳,周琳,等 .“双碳” 目标下灵活性资源的多维度实时调控模型[J].可再生能源,2023,41(9):1255-1262. |
HUANG C, CHEN X Y, ZHOU L,et al .Multi-dimensional real-time regulation model of flexible resources under “dual carbon” goals[J].Renewable Energy Resources,2023,41(9):1255-1262. | |
17 | 范馨予,黄媛,吴疆,等 .考虑源网荷储协同优化的配电网韧性提升策略[J].电力建设,2023,44(4):63-73. doi:10.12204/j.issn.1000-7229.2023.04.008 |
FAN X Y, HUANG Y, WU J,et al .Resilience promotion strategy for distribution network considering source-network-load-storage coordination[J].Electric Power Construction,2023,44(4):63-73. doi:10.12204/j.issn.1000-7229.2023.04.008 | |
18 | 石蓉,王雪妍,陆鑫,等 .基于改进聚类算法的清洁能源互联网源网荷储协调控制研究[J].电网与清洁能源,2023,39(7):134-139. |
SHI R, WANG X Y, LU X,et al .A study on the load and storage coordination control of clean energy Internet source network based on improved clustering algorithm[J].Power System and Clean Energy,2023,39(7):134-139. | |
19 | 张哲亮,夏沛,张晓星,等 .源-网-荷-储一体化环境下复杂电网投资决策指标体系的研究[J].电力科学与技术学报,2023,38(3):1-13. |
ZHANG Z L, XIA P, ZHANG X X,et al .Research on the complex grid investment decision indexes system under the integrated source-grid-load-storage environment[J].Journal of Electric Power Science and Technology,2023,38(3):1-13. | |
20 | 刘畅,卓建坤,赵东明,等 .利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J].中国电机工程学报,2020,40(1):1-18. |
LIU C, ZHUO J K, ZHAO D M,et al .A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J].Proceedings of the CSEE,2020,40(1):1-18. | |
21 | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
22 | 刘吉臻,王庆华,胡阳,等 .新型电力系统的内涵、特征及关键技术[J].新型电力系统,2023,1(1):49-65. |
LIU J Z, WANG Q H, HU Y,et al .The connotation,characteristics,and key technologies of new power systems[J].New Power Systems,2023,1(1):49-65. | |
23 | 张宁,卢静,代红才 .源网荷储协调发展下我国电力系统灵活性资源展望[J].中国电力企业管理,2020(16):44-47. |
ZHANG N, LU J, DAI H C .Prospect of flexible resources of China’s power system under the coordinated development of source,network,load and storage[J].China Power Enterprise Management,2020(16):44-47. | |
24 | 刘云 .我国能源电力发展及火电机组灵活性改造综述[J].洁净煤技术,2023,29(S2):319-327. |
LIU Y .Summary of China’s energy and electric power development and flexible transformation of thermal power units[J].Clean Coal Technology,2023,29(S2):319-327. | |
25 | 侯玉婷,李晓博,刘畅,等 .火电机组灵活性改造形势及技术应用[J].热力发电,2018,47(5):8-13. |
HOU Y T, LI X B, LIU C,et al .Flexibility reform situation and technical application of thermal power units[J].Thermal Power Generation,2018,47(5):8-13. | |
26 | 牟春华,居文平,黄嘉驷,等 .火电机组灵活性运行技术综述与展望[J].热力发电,2018,47(5):1-7. |
MU C H, JU W P, HUANG J S,et al .Review and prospect of technologies of enhancing the flexibility of thermal power units[J].Thermal Power Generation,2018,47(5):1-7. | |
27 | 国家能源局 .国家能源局发布2022年全国电力工业统计数据[J].电力勘测设计,2023(1):24. |
National Energy Administration .National Energy Administration released statistical data of national electric power industry in 2022[J].Electric Power Survey & Design,2023(1):24. | |
28 | 王颂 .中国2050年实现高比例可再生能源发展之路[N].国家电网报,2015-07-23(002). |
WANG S .The road to achieving high proportion of renewable energy development in China by 2050[N].State Grid News,2015-07-23(002). | |
29 | 袁家海,张健 .保供和达峰约束下需要科学的市场机制引导煤电平稳转型[J].中国电力企业管理,2021(31):27-30. |
YUAN J H, ZHANG J .Under the constraints of ensuring supply and peaking,scientific market mechanism is needed to guide the smooth transformation of coal-fired power[J].China Power Enterprise Management,2021(31):27-30. | |
30 | 刘凡,李海 .新型电力系统加快建设 电力安全保供和绿色转型稳中有进:2023年我国电力发展形势及2024年展望[J].中国能源,2024,46(S1):56-68. |
LIU F, LI H .Accelerating the construction of a new power system,achieving steady progress in power safety and green transformation:China’s power industry development situation in 2023 and prospects in 2024[J].Energy of China,2024,46(S1):56-68. | |
31 | 李秀财,陈永刚,曹俊波,等 .上海电源结构优化策略研究[J].发电技术,2019,40(1):40-45. |
LI X C, CHEN Y G, CAO J B,et al .Research on optimization strategy of power supply structure in Shanghai[J].Power Generation Technology,2019,40(1):40-45. | |
32 | 齐晓光,姚福星,朱天曈,等 .考虑大规模风电接入的电力系统混合储能容量优化配置[J].电力自动化设备,2021,41(10):11-19. |
QI X G, YAO F X, ZHU T T,et al .Capacity optimization configuration of hybrid energy storage in power system considering large-scale wind power integration[J].Electric Power Automation Equipment,2021,41(10):11-19. | |
33 | 王皓,张舒淳,李维展,等 .储能参与电力系统应用研究综述[J].电工技术,2020(3):21-24. |
WANG H, ZHANG S C, LI W Z,et al .Survey of energy storage used in power system application[J].Electric Engineering,2020(3):21-24. | |
34 | 王宇,朱沈超,陈芳斌,等 .中国核电与可再生能源发电协调发展初探[J].可再生能源,2021,39(8):1069-1077. doi:10.3969/j.issn.1671-5292.2021.08.013 |
WANG Y, ZHU S C, CHEN F B,et al .A preliminary study on the coordinated development of nuclear and renewable energy power generation in China[J].Renewable Energy Resources,2021,39(8):1069-1077. doi:10.3969/j.issn.1671-5292.2021.08.013 | |
35 | 杨海晶,饶宇飞,李朝晖,等 .基于随机模拟和EMD的含风光电力系统AGC调频储能定容[J].电力科学与技术学报,2022,37(5):58-65. |
YANG H J, RAO Y F, LI Z H,et al .Energy storage capacity determination for AGC frequency modulation in the power system with wind and photovoltaic power based on the stochastic simulation and EMD[J].Journal of Electric Power Science and Technology,2022,37(5):58-65. | |
36 | 鲁宗相,李海波,乔颖 .高比例可再生能源并网的电力系统灵活性评价与平衡机理[J].中国电机工程学报,2017,37(1):9-20. |
LU Z X, LI H B, QIAO Y .Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J].Proceedings of the CSEE,2017,37(1):9-20. | |
37 | 鲁宗相 .高比例可再生能源电力系统灵活性评估与优化理论及其应用[R].北京:清华大学,2019. |
LU Z X .Theory and application of flexibility evaluation and optimization of high proportion renewable energy power systems[R].Beijing:Tsinghua University,2019. | |
38 | 黄友华,马善为,刘吉,等 .燃气轮机烟气SCR脱硝系统优化设计与工程应用[J].发电技术,2021,42(3):350-356. doi:10.12096/j.2096-4528.pgt.21029 |
HUANG Y H, MA S W, LIU J,et al .Optimization design and engineering application of gas turbine SCR denitrification system[J].Power Generation Technology,2021,42(3):350-356. doi:10.12096/j.2096-4528.pgt.21029 |
[1] | 郑淇薇, 赵欣悦, 卢荻, 陈衡, 潘佩媛, 刘彤. 多类型小容量火电机组热电解耦潜力与经济性对比评估[J]. 发电技术, 2024, 45(5): 929-940. |
[2] | 张崇, 李博, 李笑宇, 刘洪波, 刘永发. 基于虚拟同步机控制参数自适应调节的储能系统调频方法[J]. 发电技术, 2024, 45(4): 772-780. |
[3] | 丁湧. 1 000 MW超超临界燃煤锅炉深度调峰研究[J]. 发电技术, 2024, 45(3): 382-391. |
[4] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
[5] | 贾志军, 范伟, 任少君, 魏唐斌. 600 MW亚临界机组长时间深度调峰燃烧稳定性研究[J]. 发电技术, 2024, 45(2): 216-225. |
[6] | 郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢. 深度调峰背景下火电机组热电解耦技术路径对比分析[J]. 发电技术, 2024, 45(2): 207-215. |
[7] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[8] | 李展, 杨振勇, 刘磊, 陈振山, 季卫鸣, 洪烽. 火电机组深度调峰工况下炉侧蓄热系数对一次调频能力的影响分析[J]. 发电技术, 2024, 45(2): 226-232. |
[9] | 杨正, 孙亦鹏, 温志强, 程亮, 李战国. 深度调峰工况下超临界机组的干湿态转换策略研究[J]. 发电技术, 2024, 45(2): 233-239. |
[10] | 郭滔, 于海洋, 冯海波, 袁汉川, 田兵, 杨玉杰, 赵元宾, 赵倩. 气侧均流装置对冷却三角单元流动传热特性影响的实验研究[J]. 发电技术, 2024, 45(1): 79-89. |
[11] | 张安安, 周奇, 李茜, 丁宁, 杨超, 马岩. “双碳”目标下火电厂CO2计量技术研究现状与展望[J]. 发电技术, 2024, 45(1): 51-61. |
[12] | 霍丽新, 王日成. 水电联产机组低负荷工况海水淡化系统供汽方案研究[J]. 发电技术, 2023, 44(5): 722-730. |
[13] | 楚帅, 王爱华, 葛维春, 李音璇, 崔岱. 电网调控集中式储热降低弃风率分析方法[J]. 发电技术, 2023, 44(1): 18-24. |
[14] | 高骞, 杨俊义, 洪宇, 孙小磊, 朱前进, 俞天, 王鑫, 王琳媛, 李泽森. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术, 2022, 43(6): 851-859. |
[15] | 董瑞, 高林, 何松, 杨东泰. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4): 523-532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||