发电技术 ›› 2026, Vol. 47 ›› Issue (1): 14-25.DOI: 10.12096/j.2096-4528.pgt.260102
王秀云, 章婉钰
收稿日期:2025-01-13
修回日期:2025-03-08
出版日期:2026-02-28
发布日期:2026-02-12
作者简介:基金资助:Xiuyun WANG, Wanyu ZHANG
Received:2025-01-13
Revised:2025-03-08
Published:2026-02-28
Online:2026-02-12
Supported by:摘要:
目的 考虑系统清洁低碳的前提下,综合能源系统中能源产品定价与市场用户的经济利益和能源运营商的盈利能力密切相关。为此,对含电转气-碳捕集电厂(power to gas-carbon capture power plant,P2G-CCPP)的综合能源系统(integrated energy system,IES)进行㶲经济分析。 方法 从㶲视角出发,兼顾能量的量与质,针对不同能流进行㶲值计算,建立㶲流计算子模型。将系统低碳经济性引入㶲经济分析中,将碳排放权交易成本、碳捕集能耗成本及碳封存成本纳入非能量成本中,建立㶲经济成本分摊子模型。相较于传统定价方法,考虑了碳成本及能量品位差异对系统冷热电单位㶲成本的影响,体现优质优价原则。 结果 仿真算例表明引入P2G-CCPP联动系统能够提高系统低碳减排能力,实现成本合理分摊。 结论 含P2G-CCPP机组的综合能源系统能够有效削减系统总成本及冷热电单位成本,增强了碳利用和燃气生产消费的节能减排途径,具有显著的经济及社会效益。
中图分类号:
王秀云, 章婉钰. 考虑电转气-碳捕集电厂联动的综合能源系统㶲经济分析[J]. 发电技术, 2026, 47(1): 14-25.
Xiuyun WANG, Wanyu ZHANG. Exergoeconomic Analysis of Integrated Energy Systems of Power to Gas-Carbon Capture Power Plant[J]. Power Generation Technology, 2026, 47(1): 14-25.
| 符号 | 㶲流 | 符号 | 㶲流 |
|---|---|---|---|
| E1 | 风电输出电㶲 | E10 | 燃气轮机耗气㶲 |
| E2 | 天然气购气㶲 | E11 | 燃气轮机输出蒸汽㶲 |
| E3 | P2G输入电㶲 | E12 | 燃气锅炉耗气㶲 |
| E4 | P2G输出天然气㶲 | E13 | 燃气锅炉输出蒸汽㶲 |
| E5 | 燃气轮机输出电㶲 | E14 | 尖峰加热器输出热水㶲 |
| E6 | 碳捕集电厂输出电㶲 | E15 | 燃气轮机输出低温热水㶲 |
| E7 | 系统输出电负荷㶲 | E16 | 吸收式制冷机输出冷水㶲 |
| E8 | 电制冷机输入电㶲 | E17 | 系统输出冷负荷㶲 |
| E9 | 电制冷机输出冷水㶲 | E18 | 系统输出热负荷㶲 |
表1 综合能源系统㶲流名称
Tab. 1 Exergic flow name of integrated energy system
| 符号 | 㶲流 | 符号 | 㶲流 |
|---|---|---|---|
| E1 | 风电输出电㶲 | E10 | 燃气轮机耗气㶲 |
| E2 | 天然气购气㶲 | E11 | 燃气轮机输出蒸汽㶲 |
| E3 | P2G输入电㶲 | E12 | 燃气锅炉耗气㶲 |
| E4 | P2G输出天然气㶲 | E13 | 燃气锅炉输出蒸汽㶲 |
| E5 | 燃气轮机输出电㶲 | E14 | 尖峰加热器输出热水㶲 |
| E6 | 碳捕集电厂输出电㶲 | E15 | 燃气轮机输出低温热水㶲 |
| E7 | 系统输出电负荷㶲 | E16 | 吸收式制冷机输出冷水㶲 |
| E8 | 电制冷机输入电㶲 | E17 | 系统输出冷负荷㶲 |
| E9 | 电制冷机输出冷水㶲 | E18 | 系统输出热负荷㶲 |
| 设备 | 最大输出功率/MW | 效率 |
|---|---|---|
| 火电厂 | 500 | — |
| P2G | 80 | 0.6 |
| 燃气轮机 | 300 | 0.35(热)/0.25(电) |
| 燃气锅炉 | 400 | 0.8 |
| 尖峰加热器 | 100 | 0.89 |
| 吸收式制冷机 | 50 | 1.05 |
| 电制冷机 | 50 | 3 |
表2 电网分时电价系统关键设备参数
Tab. 2 System key device parameters
| 设备 | 最大输出功率/MW | 效率 |
|---|---|---|
| 火电厂 | 500 | — |
| P2G | 80 | 0.6 |
| 燃气轮机 | 300 | 0.35(热)/0.25(电) |
| 燃气锅炉 | 400 | 0.8 |
| 尖峰加热器 | 100 | 0.89 |
| 吸收式制冷机 | 50 | 1.05 |
| 电制冷机 | 50 | 3 |
| 电网峰谷 | 时段 | 电价/[元/(MW⋅h)] |
|---|---|---|
| 谷时 | 00:00—08:00 | 313.9 |
| 平段 | 13:00—17:00,22:00—24:00 | 641.8 |
| 高峰 | 09:00—12:00,18:00—21:00 | 1 069.7 |
表3 电网分时电价
Tab. 3 Grid time-of-use price
| 电网峰谷 | 时段 | 电价/[元/(MW⋅h)] |
|---|---|---|
| 谷时 | 00:00—08:00 | 313.9 |
| 平段 | 13:00—17:00,22:00—24:00 | 641.8 |
| 高峰 | 09:00—12:00,18:00—21:00 | 1 069.7 |
| 场景 | 能量成本 | 非能量成本 | 综合成本 | ||
|---|---|---|---|---|---|
| 燃料成本 | 碳成本 | 弃风成本 | 运行偿还成本 | ||
| 1 | 356.707 2 | 0 | 76.007 1 | 0.007 45 | 432.788 8 |
| 2 | 364.575 5 | 8.015 9 | 25.620 1 | 0.008 30 | 397.859 8 |
| 3 | 360.959 8 | 13.890 6 | 69.166 7 | 0.007 97 | 444.025 1 |
| 4 | 362.819 1 | 12.188 5 | 22.652 6 | 0.009 13 | 397.670 2 |
表4 系统运行经济情况 (万元)
Tab. 4 Economic conditions of system operation
| 场景 | 能量成本 | 非能量成本 | 综合成本 | ||
|---|---|---|---|---|---|
| 燃料成本 | 碳成本 | 弃风成本 | 运行偿还成本 | ||
| 1 | 356.707 2 | 0 | 76.007 1 | 0.007 45 | 432.788 8 |
| 2 | 364.575 5 | 8.015 9 | 25.620 1 | 0.008 30 | 397.859 8 |
| 3 | 360.959 8 | 13.890 6 | 69.166 7 | 0.007 97 | 444.025 1 |
| 4 | 362.819 1 | 12.188 5 | 22.652 6 | 0.009 13 | 397.670 2 |
| 项目 | 场景1 | 场景2 | 场景3 | 场景4 |
|---|---|---|---|---|
| 电成本 | 221.893 3 | 186.145 4 | 222.483 1 | 183.781 9 |
| 热成本 | 232.445 1 | 226.214 0 | 232.408 8 | 225.606 6 |
| 冷成本 | 364.013 6 | 316.596 0 | 367.132 9 | 316.331 7 |
表5 冷、热、电平均单位成本 (元/(MW⋅h))
Tab. 5 Average unit cost of heating, cooling and electricity
| 项目 | 场景1 | 场景2 | 场景3 | 场景4 |
|---|---|---|---|---|
| 电成本 | 221.893 3 | 186.145 4 | 222.483 1 | 183.781 9 |
| 热成本 | 232.445 1 | 226.214 0 | 232.408 8 | 225.606 6 |
| 冷成本 | 364.013 6 | 316.596 0 | 367.132 9 | 316.331 7 |
| [1] | 刘英培,黄寅峰 .考虑碳排权供求关系的多区域综合能源系统联合优化运行[J].电工技术学报,2023,38(13):3459-3472. |
| LIU Y P, HUANG Y F .Joint optimal operation of multi-regional integrated energy system considering the supply and demand of carbon emission rights[J].Transactions of China Electrotechnical Society,2023,38(13):3459-3472. | |
| [2] | 崔杨,曾鹏,王铮,等 .计及电价型需求侧响应含碳捕集设备的电-气-热综合能源系统低碳经济调度[J].电网技术,2021,45(2):447-461. |
| CUI Y, ZENG P, WANG Z,et al .Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J].Power System Technology,2021,45(2):447-461. | |
| [3] | 张海峰,李晓华,周兴华 .考虑需求响应与碳交易的综合能源系统优化调度策略[J].电力科学与技术学报,2025,40(5):218-226. |
| ZHANG H F, LI X H, ZHOU X H .Optimization scheduling strategy of integrated energy system considering demand response and carbon trading[J].Journal of Electric Power Science and Technology,2025,40(5):218-226. | |
| [4] | 张程,曾崟琳,匡宇 .考虑需求响应和碳捕集电厂灵活运行方式的综合能源系统调度[J].智慧电力,2024,52(9):88-95. |
| ZHANG C, ZENG Y L, KUANG Y .Integrated energy system scheduling considering demand response and flexible operation of carbon capture power plant[J].Smart Power,2024,52(9):88-95. | |
| [5] | 陈图南,李文萱,李云,等 .“双碳”背景下碳-绿证-电力市场耦合机制综述[J].广东电力,2024,37(8):14-25. |
| CHEN T N, LI W X, LI Y,et al .Review on coupling mechanism of carbon,green certificate and power market under the background of carbon peaking and carbon neutrality[J].Guangdong Electric Power,2024,37(8):14-25. | |
| [6] | 李红伟,吴佳航,王佳怡,等 .计及P2G及碳捕集的风光氢储综合能源系统低碳经济调度[J].电力系统保护与控制,2024,52(16):26-36. |
| LI H W, WU J H, WANG J Y,et al .Low-carbon economic dispatch of a wind,solar,and hydrogen storage integrated energy system considering P2G and carbon capture[J].Power System Protection and Control,2024,52(16):26-36. | |
| [7] | 胡景成,范耘豪,朱同,等 .基于同态加密的综合能源系统完全分布式低碳经济调度[J].中国电力,2025,58(2):164-175. |
| HU J C, FAN Y H, ZHU T,et al .Distributed low-carbon economic dispatch for integrated energy system based on homomorphic encryption[J].Electric Power,2025,58(2):164-175. | |
| [8] | 何旭东,刘炜焘,郑宇辰,等 .双碳目标下需求侧参与的电力市场电能响应相关策略研究[J].电测与仪表,2025,62(12):41-47. |
| HE X D, LIU W T, ZHENG Y C,et al .Study on relevant strategies of power response in electricity market with demand-side participation under dual-carbon target[J].Electrical Measurement & Instrumentation,2025,62(12):41-47. | |
| [9] | 冀肖彤,杨东俊,方仍存,等 .“双碳”目标下未来配电网构建思考与展望[J].电力建设,2024,45(2):37-48. |
| JI X T, YANG D J, FANG R C,et al .Research and prospect of future distribution network construction under dual carbon target[J].Electric Power Construction,2024,45(2):37-48. | |
| [10] | 胡山鹰,金涌,张臻烨 .发展新质生产力,实现碳中和[J].发电技术,2025,46(1):1-8. |
| HU S Y, JIN Y, ZHANG Z Y .Developing new quality productive forces to achieve carbon neutrality[J].Power Generation Technology,2025,46(1):1-8. | |
| [11] | 周步祥,夏海东,臧天磊 .考虑能量梯级利用的园区综合能源系统站网协同规划[J].电力自动化设备,2022,42(1):20-27. doi:10.1016/j.gloei.2021.03.004 |
| ZHOU B X, XIA H D, ZANG T L .Station and network coordinated planning of park integrated energy system considering energy cascade utilization[J].Electric Power Automation Equipment,2022,42(1):20-27. doi:10.1016/j.gloei.2021.03.004 | |
| [12] | CHEN Z, ZHANG Y, JI T,et al .Coordinated optimal dispatch and market equilibrium of integrated electric power and natural gas networks with P2G embedded[J].Modern Power Systems and Clean Energy,2018,6(3):495-508. doi:10.1007/s40565-017-0359-z |
| [13] | ZHANG Z, WANG C, LV H,et al .Day-ahead optimal dispatch for integrated energy system considering power-to-gas and dynamic pipeline networks[J].IEEE Transactions on Industry Applications,2021,57(4):3317-3328. doi:10.1109/tia.2021.3076020 |
| [14] | 李天格,胡志坚,陈志,等 .计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J].电力自动化设备,2023,43(1):16-24. |
| LI T G, HU Z J, CHEN Z,et al .Multi-time scale low-carbon operation optimization strategy of integrated energy system considering electricity-gas-heat-hydrogen demand response[J].Electric Power Automation Equipment,2023,43(1):16-24. | |
| [15] | ANG S, LI B W, YANG X S,et al .Performance of sorption-enhanced chemical looping gasification system coupled with solid oxide fuel cell using exergy analysis[J].International Journal of Hydrogen Energy,2021,46(2):1752-1761. doi:10.1016/j.ijhydene.2020.10.111 |
| [16] | HE L, LU Z, ZHANG J,et al .Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas[J].Applied energy,2018,224:357-370. doi:10.1016/j.apenergy.2018.04.119 |
| [17] | ZHANG Q, LIU X, ZHANG T,et al .Performance optimization of a heat pump driven liquid desiccant dehumidification system using exergy analysis[J].Energy,2020,204:117891. doi:10.1016/j.energy.2020.117891 |
| [18] | CALISKAN H, AÇIKKALP E, TAKLEH H R,et al .Advanced,extended and combined extended-advanced exergy analyses of a novel geothermal powered combined cooling,heating and power (CCHP) system[J].Renewable Energy,2023,206:125-134. doi:10.1016/j.renene.2023.02.032 |
| [19] | AÇIKKALP E, CALISKAN H, HONG H,et al .Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings[J].Applied Energy,2022,323:119581. doi:10.1016/j.apenergy.2022.119581 |
| [20] | 王丹,周天烁,李家熙,等 .面向能源转型的高㶲综合能源系统理论与应用[J].电力系统自动化,2022,46(17):114-131. doi:10.7500/AEPS20220331003 |
| WANG D, ZHOU T S, LI J X,et al .Theory and application of high-exergy integrated energy system for energy transition[J].Automation of Electric Power Systems,2022,46(17):114-131. doi:10.7500/AEPS20220331003 | |
| [21] | MENBERG K,HEO Y, CHOI W,et al .Exergy analysis of a hybrid ground-source heat pump system[J].Applied Energy,2017,204:31-46. doi:10.1016/j.apenergy.2017.06.076 |
| [22] | 华惠莲,王军,陈玉柱,等 .天然气冷热电联供系统热经济优化研究[J].热能动力工程,2023,38(2):26-32. |
| HUA H L, WANG J, CHEN Y Z,et al .Thermal economic optimization of natural gas combined cooling heating and power system[J].Journal of Engineering for Thermal Energy and Power,2023,38(2):26-32. | |
| [23] | 李家熙,王丹,贾宏杰 .面向综合能源系统㶲流机理与分析方法[J].电力系统自动化,2022,46(12):163-173. |
| LI J X, WANG D, JIA H J .Exergy flow mechanism and analysis method for integrated energy system[J].Automation of Electric Power Systems,2022,46(12):163-173. | |
| [24] | HU X, ZHANG H, CHEN D,et al .Multi-objective planning for integrated energy systems considering both exergy efficiency and economy[J]. Energy,2020,197:117155. doi:10.1016/j.energy.2020.117155 |
| [25] | SONG J, ZHANG L, JIANG Q,et al .Estimate the daily consumption of natural gas in district heating system based on a hybrid seasonal decomposition and temporal convolutional network model[J].Applied Energy,2022,309:118444. doi:10.1016/j.apenergy.2021.118444 |
| [26] | 程泽扬,蔡磊,吴谋亮,等 .LNG富氧燃烧电厂㶲及㶲经济分析[J].煤气与热力,2022,42(1):1-9. doi:10.3969/j.issn.1000-4416.2022.1.mqyrl202201010 |
| CHENG Z Y, CAI L, WU M L,et al .Exergy and exergy-economic analysis of LNG oxygen enriched combustion power plant[J].Gas & Heat,2022,42(1):1-9. doi:10.3969/j.issn.1000-4416.2022.1.mqyrl202201010 | |
| [27] | 周洋,王进,任胜男,等 .计及碳捕集设备的电-气互联综合能源系统低碳经济调度[J].电器与能效管理技术,2020(4):106-112. |
| ZHOU Y, WANG J, REN S N,et al .Low carbon economic dispatching of electric-gas interconnection integrated energy source system considering carbon capture equipment[J].Electrical & Energy Management Technology,2020(4):106-112. | |
| [28] | WANG R, WEN X, WANG X,et al .Low carbon optimal operation of integrated energy system based on carbon capture technology,LCA carbon emissions and ladder-type carbon trading[J].Applied Energy,2022,311:118664. doi:10.1016/j.apenergy.2022.118664 |
| [29] | 崔杨,曾鹏,仲悟之,等 .考虑富氧燃烧技术的电-气-热综合能源系统低碳经济调度[J].中国电机工程学报,2021,41(2):592-608. doi:10.13334/j.0258-8013.pcsee.191708 |
| CUI Y, ZENG P, ZHONG W Z,et al .Low-carbon economic dispatch of electro-gas-thermal integrated energy system based on oxy-combustion technology[J].Proceedings of the CSEE,2021,41(2):592-608. doi:10.13334/j.0258-8013.pcsee.191708 | |
| [30] | 魏伟,叶利,方毅,等 .考虑碳排放配额和碳交易的新能源电力系统日前优化调度[J].电网与清洁能源,2024,40(1):130-136. doi:10.3969/j.issn.1674-3814.2024.01.014 |
| WEI W, YE L, FANG Y,et al .Day-ahead optimal scheduling of new energy power system considering carbon emission quota and carbon trading[J].Power System and Clean Energy,2024,40(1):130-136. doi:10.3969/j.issn.1674-3814.2024.01.014 | |
| [31] | 连进步,张泠,高效,等 .基于㶲经济学的综合能源系统动态冷热电成本[J].中国电力,2022,55(10):161-169. |
| LIAN J B, ZHANG L, GAO X,et al .Dynamic cost of cooling, heating and power in integrated energy system based on exergy economics[J].Electric Power,2022,55(10):161-169. |
| [1] | 李涛, 张春, 胡添诚. 基于模糊自抗扰的光储预同步虚拟同步发电机并网策略[J]. 发电技术, 2026, 47(1): 111-121. |
| [2] | 胡泽灵, 郝俊红, 巨陈治, 马腾宇, 窦真兰, 李双江. 基于标准热阻法的压缩空气储能系统整体建模及能-㶲分析[J]. 发电技术, 2026, 47(1): 122-132. |
| [3] | 罗城鑫, 吕彦龙, 刘润宝, 谢玉荣, 王雨昊, 刘锋, 隋军. 基于热泵技术的低碳排冷热电联供系统㶲经济性能研究[J]. 发电技术, 2025, 46(6): 1085-1096. |
| [4] | 卞时刚, 孟婷婷, 杨理理. 基于循环伏安法的热充电超级电容器数值研究[J]. 发电技术, 2025, 46(6): 1176-1183. |
| [5] | 李凌旭, 陈龙祥, 叶楷. 基于石块-沙子-导热油的多种组合混合储热性能研究[J]. 发电技术, 2025, 46(6): 1192-1199. |
| [6] | 施凯, 龚祎帆, 徐培凤, 杜怿, 孙宇新, 任明炜. 基于功率环与电流环联合控制的虚拟同步发电机故障穿越控制策略[J]. 发电技术, 2025, 46(6): 1231-1239. |
| [7] | 欧阳昌乐, 张春, 吴文泰, 栾惟聪, 夏祥子. 基于改进动态事件触发机制的微电网经济调度一致性算法[J]. 发电技术, 2025, 46(6): 1240-1250. |
| [8] | 王洪健, 黄延凯, 喻鑫, 于敦喜. 纯燃高碱煤循环流化床锅炉宽负荷低NO x 燃烧改造试验研究[J]. 发电技术, 2025, 46(5): 1005-1013. |
| [9] | 李建军, 尚曼霞, 董海龙, 李冰铭, 黄中. 350 MW超临界循环流化床锅炉联合脱硝技术应用与优化研究[J]. 发电技术, 2025, 46(5): 1014-1021. |
| [10] | 屠楠, 王驰宇, 刘晓群, 方嘉宾. 基于正交试验的流化床颗粒停留时间分布特性数值分析[J]. 发电技术, 2025, 46(5): 1032-1040. |
| [11] | 罗晟, 王磊, 李杨, 孟庆明, 张贵彬, 赵元宾. 变流量配水对湿冷塔冷却特性的影响及其优化[J]. 发电技术, 2025, 46(5): 1041-1049. |
| [12] | 马宁, 赵攀, 刘艾杰, 许文盼, 王江峰. 纯氢补燃型和天然气补燃型压缩空气储能系统特性与㶲经济性对比[J]. 发电技术, 2025, 46(5): 885-896. |
| [13] | 董福贵, 张伟. 考虑容量价值的独立新型储能电站运行策略优化研究[J]. 发电技术, 2025, 46(5): 897-908. |
| [14] | 高鑫, 王驰中, 桂芳旭, 陈衡, 张锴, 张国强. 不同区域集中式光伏电站平价上网经济性分析[J]. 发电技术, 2025, 46(5): 930-938. |
| [15] | 庄坤, 汪中宏, 张一凡, 殷文倩, 雷茂云, 朱静, 李锋, 叶季蕾. 整县屋顶分布式光伏发电经济性模型及关键影响因素[J]. 发电技术, 2025, 46(5): 950-958. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||